BINOMIAL THEOREM

(KEY CONCEPTS + SOLVED EXAMPLES)

BINOMIAL THEOREM

- *1. Binomial Expressions*
- *2. Binomial Theorem*
- *3. Binomial Theorem for positive Integral Index*
- *4. Number of Terms in the Expansion of (x + y + z)n*
- *5. Middle Term in the Expansion of (x + a)n*
- *6. Determination of Particular Term in the Expansion*
- *7. Determination of Term from the End in Expansion of (x + a)n*
- *8. Binomial Coefficients & Their Properties*
- *9. Greatest Term in the Expansion of (x + a)n*
- *10. Binomial Theorem for Any Index*

KEY CONCEPTS

1. Binomial Expressions

An algebraic expression containing two terms is called a **binomial expression**.

For example , $2x + 3$, $x^2-x/3$, $x + a$ etc. are

Binomial Expressions.

2. Binomial Theorem

The rule by which any power of a binomial can be expanded is called the **Binomial Theorem**.

3. Binomial Theorem for Positive Integral Index

If x and a are two real numbers and n is a positive integer then

 $(x + a)^n = C_0$ x n a 0 + ${}^{n}C_{1}x^{n-1}a$ + ${}^{n}C_{2}x$ $n-2a$ $+$ …….. + ${}^{n}C_{r}x^{n-r}a^{r} + \ldots + {}^{n}C_{n}x^{0}a^{n}$.

Where ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$, ${}^{n}C_{3}$,......, ${}^{n}C_{r}$ are called **binomial coefficients** which can be denoted by $C_0, C_1, C_2, C_3, \ldots, C_r, \ldots$

3.1 General Term: In the expansion of $(x+a)^n$, $(r+1)^{th}$ term is called the **general term** which can be represented by T_{r+1} .

 $\mathbf{T}_{r+1} = {}^{n}C_r \mathbf{x}^{n-r} \mathbf{a}^r$

 $= {}^nC_r$ (first term)^{n-r} (second term)^r.

3.2 Characteristics of the expansion of $(x + a)^n$

Observing to the expansion of $(x + a)^n$, $n \in N$, we find that-

- (i) The total number of terms in the expansion $= (n + 1)$ i.e. one more than the index n.
- **(ii)** In every successive term of the expansion the power of x (first term) decreases by 1and the power of (second term) increases by 1. Thus in every term of the expansion, the sum of the powers of x and a is equal to n (index).
- **(iii)** The binomial coefficients of the terms which are at equidistant from the beginning and from the end are always equal i.e.

 ${}^nC_r = {}^nC_{n-r}$

Thus ${}^nC_0 = {}^nC_n$, ${}^nC_1 = {}^nC_{n-1}$,

 ${}^{n}C_{2} = {}^{n}C_{n-2}$ etc.

 (iv) ⁿC_r-1 + ⁿC_r = ⁿ⁺¹C_r

3.3 Some deduction of Binomial Theorem :

 (i) Expansion of $(x-a)^n$.

 $(x - a)^n = {}^nC_0 x^n a^0 - {}^nC_1 x^{n-1} a^1 + {}^nC_2 x^{n-2} a^2$

 $(-a)$ in place of a in the expansion of $(x+a)^n$.

 ${}^{n}C_{3}x^{n-3}a^{3} + ... + (-1)^{r} {}^{n}C_{r}x^{n-r}a^{r} + ... + (-1)^{n} {}^{n}C_{n}x^{o} a^{n}$

This expansion can be obtained by putting

General term = $(r + 1)$ **th term**

$$
\mathbf{T}_{r+1} = {}^n\mathbf{C}_r(-1)^r. \mathbf{x}^{n-r} \mathbf{a}^r
$$

(ii) By putting $x = 1$ and $a = x$ in the expansion of $(x + a)^n$, we get the following result $(1+x)^n = {}^nC_0 + {}^nC_1 x + {}^nC_2 x^2 + ... + {}^nC_r x^r + ...$+ ${}^{n}C_{n}x^{n}$

which is the standard form of binomial expansion.

General term = $(r + 1)$ **th term** $\mathbf{T}_{r+1} = {}^{n}C_{r} \mathbf{x}$ ^r $=\frac{m(n-1)(n-2)}{r!}$ $\frac{n(n-1)(n-2)\dots(n-r+1)}{n}$. x^{r} (iii) By putting $(-x)$ in place of x in the expansion of $(1+x)^n$ $(1-x)^n = nC_0 {}^{n}C_{1}$ x + ${}^{n}C_{2}$ x² - ${}^{n}C_{3}x$ $+$ $...+$ $(-1)^{r} {}^{n}C_{r}x^{r} + \dots + {}^{n}C_{n}x^{n}$ **General term =** $(r + 1)$ **th term** $T_{r+1} = (-1)^r$. ⁿC_r **x** ^r $= (-1)^r \cdot \frac{\ln(n-r)(n-2)}{r!}$ $\frac{n(n-1)(n-2)\dots(n-r+1)}{2}$. x^{r} **4. Number of Terms in the Expansion of** $(\mathbf{x} + \mathbf{y} + \mathbf{z})^n$ $(x + y + z)^n$ can be expanded as- $(x + y + z)^n = \{(x + y) + z\}^n$ $=$ $(x + y)^n + {}^nC_1(x + y)^{n-1}z + {}^nC_2(x + y)^{n-2}z^2$ ++ ${}^nC_n z^n$. $=$ (n $+$ 1) terms $+$ n terms $+$ (n–1) terms ++ 1 term \therefore Total number of terms = $(n+1) + n + (n-1) + ... + 1$ $=\frac{(n+1)(n+2)}{2}$ $(n+1)(n+2)$

5. Middle Term in the Expansion of $(x + a)^n$

(a) If n is even, then the number of terms in the expansion i.e. (n+1) is odd, therefore, there will be only one middle

term which is
$$
\left(\frac{n+2}{2}\right)^{th}
$$
 term. i.e. $\left(\frac{n}{2}+1\right)^{th}$ term.
so middle term = $\left(\frac{n}{2}+1\right)^{th}$ term.

(b) If n is odd, then the number of terms in the expansion i.e. $(n + 1)$ is even, therefore there will be two middle terms which are

$$
= \left(\frac{n+1}{2}\right)^{th} \text{ and } \left(\frac{n+3}{2}\right)^{th} \text{ term.}
$$

Note : (i) When there are two middle terms in the expansion then their Binomial coefficients are equal. (ii) Binomial coefficient of middle term is the greatest Binomial coefficient.

6. To Determine a Particular Term in the Expansion

In the expansion of $\left(x^{\alpha} \pm \frac{1}{\alpha}\right)^n$ x $x^{\alpha} \pm \frac{1}{\alpha}$ J $\left(x^{\alpha} \pm \frac{1}{\alpha}\right)$ l ſ $\alpha \pm \frac{1}{\alpha \beta}$, if x^m occurs in T_{r+1} , then r is given by $n \alpha - r (\alpha + \beta) = m$ \Rightarrow $r = \frac{nc - n}{\alpha + \beta}$ $n\alpha - m$

Thus in above expansion if constant term i.e. the term which is independent of x, occurs in T_{r+1}

then r is determined by

$$
n \alpha - r (\alpha + \beta) = 0
$$

$$
\Rightarrow r = \frac{n\alpha}{\alpha + \beta}
$$

 7. To Find a Term the end in the Expansion $of (x + A)^N$

It can be easily seen that in the expansion of $(x+a)^n$. $(r+1)$ th term from end = $(n-r+1)$ th term from beginning. i.e. $T_{r+1}(E) = T_{n-r+1}(B)$

 $T_r(E) = T_{n-r+2} (B)$

8. Binomial Coefficients & Their Properties

In the expansion of $(1+x)^n$; i.e. $(1+x)^n = {}^nC_0 + {}^nC_1x + ... + {}^nC_r x^r + ... + {}^nC_nx^n$

The coefficients ${}^{n}C_{0}$, nC_1 , nC_n of various powers of x, are called binomial coefficients and they are written as

$$
C_0, C_1, C_2, \ldots, C_n
$$

Hence

$$
(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_rx^r + \dots + C_nx^n
$$
...(1)

Where
$$
C_0 = 1
$$
, $C_1 = n$, $C_2 = \frac{n(n-1)}{2!}$

$$
C_r = \frac{n(n-1).......(n-r+1)}{r!}, C_n = 1
$$

Now, we shall obtain some important expressions involving binomial coefficients-

(a) **Sum of Coefficient :** putting $x = 1$ in (1), we get

 C_0 + C_1 + C_2 ++ C_n = 2^n ...(2)

- **(b) Sum of coefficients with alternate signs :** putting $x = -1$ in(1) We get C_0 - C_1 + C_2 – C_3 + = 0 ...(3)
- **(c) Sum of coefficients of even and odd terms:** from (3), we have

 C_0 + C_2 + C_4 + = C_1 + C_3 + C_5 +(4)

i.e. sum of coefficients of even and odd terms are equal.

from (2) and (4)

 \implies $C_0 + C_2 + \dots = C_1 + C_3 + \dots = 2^{n-1}$

 (d) Sum of products of coefficients : Replacing x by 1/x in (1) We get

$$
\left(1+\frac{1}{x}\right)^{n} = C_{0} + \frac{C_{1}}{x} + \frac{C_{2}}{x^{2}} + \dots + \frac{C_{n}}{x^{n}} + \dots
$$

...(5)

Multiplying (1) by (5) , we get

$$
\frac{(1+x)^{2n}}{x^n} = (C_0 + C_1x + C_2x^2 +)
$$

$$
(C_0+\; \frac{C_1}{x}\; +\frac{C_2}{x}\; +....)
$$

Now, comparing coefficients of x^r on both the sides, we get C_0C_r + C_1C_{r+1} ++ $C_{n-r}C_n = {}^{2n}C_{n-r}$

$$
= \frac{2n!}{(n+1)!(n-r)!} \qquad ...(6)
$$

(e) Sum of squares of coefficients : putting $r = 0$ in (6), we get

$$
C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = \frac{2n!}{n!n!}
$$

- **(f)** putting $r = 1$ in (6), we get $C_0 C_1 + C_1 C_2 + C_2 C_3 + \dots + C_{n-1} C_n = {}^{2n}C_{n-1}$ $=\frac{2n!}{(n+1)!(n-1)!}$ 2n! $^+$...(7)
- (g) putting $r = 2$ in (6), we get $C_0C_2 + C_1C_3 + C_2C_4 + \dots + C_{n-2}C_n = {}^{2n}C_{n-2}$ $=\frac{2n!}{(n+2)!(n-2)!}$ 2n! $^+$... (8)
- **(h)** Differentiating both sides of (1) w.r.t. x, we get $n(1+x)^{n-1} = C_1 + 2C_2x + 3C_3x^2 + \dots + nC_n x^{n-1}$ Now putting $x = 1$ and $x = -1$ respectively C_1 + 2C₂ +3C₃++ nC_n = n.2ⁿ⁻¹(9) and $C_1 - 2C_2 + 3C_3 - \dots = 0$...(10)
- **(i)** adding (2) and (9) $C_0+2C_1+3C_2+....+^{(n+1)}C_n=2^{n-1}(n+2)$...(11)
- **(j)** Integrating (1) w.r.t. x between the limits 0 to 1, we get,

$$
\left[\frac{(1+x)^{n+1}}{n+1}\right]_0^1 = \left[C_0x + C_1\frac{x^2}{2} + C_2\frac{x^3}{3} + \dots + \frac{C_nx^{n+1}}{n+1}\right]_0^1
$$

\n
$$
\Rightarrow C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{n+1} \qquad \dots (12)
$$

\nIntegrating (1) w.r.t. x between
\n-1 to 0, we get
\n
$$
\left[\frac{(1+x)^{n+1}}{n+1}\right]_{-1}^0
$$

\n
$$
\left[\frac{1+x}{n+1}\right]_{-1}^0
$$

$$
= \left[C_0 x + C_1 \frac{x}{2} + C_2 \frac{x}{3} + \dots + \frac{C_n x}{n+1} \right]_{-1}
$$

\n
$$
\Rightarrow C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \frac{C_3}{4} + \dots + \frac{(-1)^n C_n}{n+1} = \frac{1}{(n+1)} \dots (13)
$$

9. Greatest Term in the Expansion of $(X + A)^N$

(a) The term in the expansion of $(x+a)^n$ of greatest coefficient

$$
= \begin{cases} \n\frac{T_{n+2}}{2}, \text{ when } n \text{ is even} \\ \n\frac{T_{n+1}}{2}, \frac{T_{n+3}}{2}, \text{ when } n \text{ is odd} \n\end{cases}
$$

(b) The greatest term

$$
=\begin{cases} &T_p\ \&\ T_{p+1}\ \text{when}\ \cfrac{(n+1)a}{x+a}=p\in Z\\ T_{q+1}\ \text{when}\ \cfrac{(n+1)a}{x+a}\notin Z\ \text{and}\ q<\cfrac{(n+1)a}{x+a}
$$

10. Binomial Theorem For Any Index

When n is a negative integer or a fraction then the expansion of a binomial is possible only when

- (i) Its first term is 1, and
- (ii) Its second term is numerically less than 1.

Thus when $n \notin N$ and $|x| < 1$, then it states

$$
(1 + x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!}x^{3}
$$

$$
+ + \frac{n(n-1)(n-r+1)}{r!}x^{r} + ... \infty
$$

10.1General Term :

$$
T_{r+1} = \frac{n(n-1)(n-2)\dots(n-r+1)}{r!} \cdot x^r
$$

Note :

- (i) In this expansion the coefficient of different terms can not be expressed as n_0 , n_0 , n_1 , n_2 ... because **n** is not a positive integer.
- **(ii)** In this case there are infinite terms in the expansion.

10.2 Some Important Expansions :

If $|x| < 1$ and $n \in Q$ but $n \notin N$, then

(a)
$$
(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + + \frac{n(n-1)...(n-r+1)}{r!}x^r +
$$

(b)
$$
(1-x)^n = 1 - nx + \frac{n(n-1)}{2!}x^2 - \frac{n(n-1)(n-2)}{3!}x^3 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}(-x)^r + \dots
$$

(c)
$$
(1-x)^{-n} = 1 + nx + \frac{n(n+1)}{2!}x^2 + \frac{n(n+1)(n+2)}{3!}x^3 + \dots + \frac{n(n+1)...(n+r-1)}{r!}x^r + \dots
$$

(d)
$$
(1 + x)^{-n} = 1 - nx + \frac{n(n+1)}{2!}x^2 - \frac{n(n+1)(n+2)}{3!}x^3 + \dots + \frac{n(n+1)...(n+r-1)}{r!}(-x)^r + \dots
$$

By putting $n = 1, 2, 3$ in the above results (c) and (d), we get the following results-

(e) $(1 - x)^{-1} = 1 + x + x^2 + x^3 + \dots + x^r + \dots$ **General term** $T_{r+1} = x^r$

- **(f)** $(1+x)^{-1} = 1-x+x^2-x^3+....(-x)^{r}+....$ **General term** $T_{r+1} = (-x)^{r}$
	- **(g)** $(1-x)^{-2} = 1+2x+3x^2+4x^3+....+(r+1)x^r+....$ **General term** $T_{r+1} = (r+1) x^r$
	- **(h)** $(1+x)^{-2} = 1-2x+3x^2-4x^3+....+(r+1)(-x)^{r}+.....$ **General term** $T_{r+1} = (r + 1) (-x)^r$.

(i)
$$
(1-x)^{-3} = 1+3x + 6x^2 + 10x^3 + \dots + \frac{(r+1)(r+2)}{2!}x^r + \dots
$$

\nGeneral term $= \frac{(r+1)(r+2)}{2!}x^r$
\n(j) $(1+x)^{-3} = 1-3x + 6x^2 - 10x^3 + \dots + \frac{(r+1)(r+2)}{2!}(-x)^r + \dots$
\nGeneral term $= \frac{(r+1)(r+2)}{2!}(-x)^r$.

P

SOLVED EXAMPLES

Ex.1 The first four terms of the expansion of

$$
\left(ax - \frac{1}{bx^2}\right)^5 are-
$$
\n(A) $a^5x^5 - 5\frac{a^4}{b}x^2 + 10\frac{a^3}{b^2x} - 10\frac{a^2}{b^3x^4}$
\n(B) $a^5x^5 + 5\frac{a^4}{b}x^2 - 10\frac{a^3}{b^2x} + 10\frac{a^2}{b^3x^4}$
\n(C) $a^5x^5 - 5\frac{a^4}{b}x^2 - 10\frac{a^3}{b^2x} - 10\frac{a^2}{b^3x^4}$
\n(D) $a^5x^5 + 5\frac{a^4}{b}x^2 + 10\frac{a^3}{b^2x} + 10\frac{a^2}{b^3x^4}$

Sol.

$$
\left(\text{ax} - \frac{1}{\text{bx}^2}\right)^5
$$

= ${}^5\text{C}_0 (\text{ax})^5 + {}^5\text{C}_1 (\text{ax})^4 \left(-\frac{1}{\text{bx}^2}\right) +$
 ${}^5\text{C}_2 (\text{ax})^3 \left(-\frac{1}{\text{bx}^2}\right)^2 + {}^5\text{C}_3 (\text{ax})^2 \left(-\frac{1}{\text{bx}^2}\right)^3 + \cdots$
= $\text{a}^5 \text{x}^5 - 5 \frac{\text{a}^4}{\text{b}} \text{x}^2 + 10 \frac{\text{a}^3}{\text{b}^2 \text{x}} - 10 \frac{\text{a}^2}{\text{b}^3 \text{x}^4} + \cdots$

Ans. [A]

8

J \backslash

Ex.2 The sixth term in the expansion of
$$
(3x^2 - \frac{1}{2x})
$$

\nis.
\n(A) $\frac{189}{4}x$ (B) $-\frac{189}{4}x$
\n(C) $\frac{189}{4}x^2$ (D) $\frac{189}{4}x^3$
\n**Sol.** T₆ = ${}^8C_5 (3x^2)^3 \left(-\frac{1}{2x}\right)^5$
\n= $56 \times (27x^6) \times \left(-\frac{1}{32x^5}\right)$
\n= $-\frac{189}{4}x$ Ans. [B]

- **Ex.3** If in the expansion of $(1 + y)^n$, the coefficient of 5th, 6th and 7th terms are in A.P., then n is equal to-
	- $(A) 7, 11$ (B) 7, 14

$$
(C) 8, 16 \t\t (D) None of these
$$

Sol. As given nC_4 , nC_5 , nC_6 are in AP.

$$
\Rightarrow {}^{n}C_{4} + {}^{n}C_{6} = 2. {}^{n}C_{5}
$$
\n
$$
\Rightarrow \frac{n!}{(n-4)! 4!} + \frac{n!}{(n-6)! 6!} = 2 \frac{n!}{(n-5)! 5!}
$$
\n
$$
\Rightarrow 30 + (n-5) (n-4) = 2.6 (n-4)
$$
\n
$$
\Rightarrow n^{2} - 21n + 98 = 0
$$
\n
$$
\Rightarrow (n-7) (n-14) = 0
$$
\n∴ n = 7, 14 \n**Ans. [B]**

- **Ex. 4** The sum of the coefficient of the terms of the expansion of polynomial $(1 + x - 3x^2)^{2143}$ is- (A) 2²¹⁴³ (B) 1 $(C) -1$ (D) 0
- Sol. We get the sum of the coefficients of terms by putting $x = 1$ in the polynomial $(1 + x - 3x^2)^{2143}$ $(1+1-3)^{2143} = (-1)^{2143}$

$$
= (-1)^{2142} \cdot (-1)
$$

= [(-1)²]¹⁰²¹ \cdot (-1)
= 1 \times -1 = -1.

Ans. [C]

Ex.5 The middle term of the expansion 8 x $\vert x-\frac{2}{x}\vert$ J $\left(x-\frac{2}{x}\right)$ l $\left(x-\frac{2}{\cdot}\right)^{\circ}$ is-(A) 560 (B) -560 (C) 1120 (D) -1120 **Sol.** Since $(n = 8)$ is even then there is only one middle

term i.e.
$$
T_{8+2} = T_5
$$

\n
$$
\therefore T_5 = {}^{8}C_4(x)^{4}(-2/x)^{4}
$$
\n
$$
= {}^{8}C_4 \cdot (-2)^{4} = 16.{}^{8}C_4
$$
\n
$$
= 1120
$$
 Ans. [C]

Ex.6 The term independent from x in the expansion of

$$
\left(\sqrt{x} - \frac{3}{x^2}\right)^{10}
$$
 is -
(A) 3240 (B) - 3240

(C) 405 (D)
$$
-405
$$

Sol. Since we require term independent from x
\n∴
$$
nα - r(α + β) = 0
$$

\n $\Rightarrow 10 \times \frac{1}{2} - r(\frac{1}{2} + 2) = 0$
\n $\Rightarrow r = 2$ i.e. 3rd term.
\n∴ $T_3 = {}^{10}C_2(\sqrt{x})^8 (-3/x^2)^2$
\n $= {}^{10}C_2.(-3)^2.x^{\circ}$
\n $= \frac{10.9}{2.1}.9 = 405$ Ans. [C]
\n**Ex.7** If in the expansion of $(x^3 - \frac{3}{x^2})^{15}$ the rth term is
\nindependent of x, then r equals-(A) 8 (B) 9
\n(C) 10 (D) None of these
\n**Sol.** If rth term is independent of x, then by the
\nformula
\n $15 \times 3 - (r-1) (3 + 2) = 0$

$$
\Rightarrow \qquad \qquad r-1=9 \Rightarrow r=10.
$$

Ans. [C]

Ex.8 If
$$
(1+x)^n = C_0 +C_1x + C_2x^2 + ... + C_nx^n
$$
 then
\n $C_0+2C_1+3C_2+....+(n+1)C_n$ is equal to
\n(A) $2^{n-1}(n+2)$ (B) $2^n(n+1)$
\n(C) $2^{n-1}(n+1)$ (D) $2^n(n+2)$

Sol. Putting $x = 1$ in the given expansion, we get C_0 + C_1 + C_2 + C_3 + ...C_n $\dots(1)$ Now, differentiating the given expansion with respect to x and then putting $x = 1$, we get $C_1 + 2C_2 + 3C_3 + \dots + nC_n = n \cdot 2^{n-1}$

 ...(2) Given Exp. = C⁰ + 2C¹ + 3C2 ++ (n + 1) Cⁿ = (C0 + C¹ + C² +.....+ Cⁿ) + (C¹ + 2C² + 3C³ ++ nCⁿ) = 2n + n. 2 n–1

[from (1) and (2)] = 2^{n-1} (n + 2)

[A]

Ex.9 If
$$
(1 + x)^n = C_0 + C_1x + C_2x^2 + ... + C_nx^n
$$
, then
\n
$$
\frac{(C_0 + C_1)(C_1 + C_2)...(C_{n-1} + C_n)}{C_1C_2...C_n}
$$
 equals-
\n(A) $\frac{n^n}{(n+1)!}$ (B) $\frac{(n+1)^n}{n!}$
\n(C) $\frac{n^n}{n!}$ (D) None of these

Sol. The given expression

$$
= \frac{C_0C_1C_2...C_{n-1}}{C_1C_2...C_n} \cdot \left(1 + \frac{C_1}{C_0}\right) \left(1 + \frac{C_2}{C_1}\right)
$$

$$
\left(1 + \frac{C_3}{C_2}\right) ... \left(1 + \frac{C_n}{C_{n-1}}\right)
$$

$$
= \left(1 + \frac{n}{1}\right) \left(1 + \frac{n-1}{2}\right) \left(1 + \frac{n-2}{3}\right) ... \left(1 + \frac{1}{n}\right)
$$

$$
(\because C_0 = C_n)
$$

$$
= \frac{(n+1)^n}{n!}
$$
 Ans. [B]

Ex.10 In the expansion of $(4 - 3x)^7$, the numerically greatest term at $x = 2/3$ is -(A) T_4 (B) T_5 (C) T_3 (D) T_2

Sol.
$$
(4-3x)^7 = 4^7 \left(1 - \frac{3x}{4}\right)^7
$$

$$
\therefore \frac{T_{r+1}}{T_r} = \left|\frac{7 - r + 1}{r} \cdot \frac{-3x}{4}\right|
$$

$$
= \frac{8-r}{2r} \qquad \left(\because x = \frac{2}{3}\right)
$$

$$
\text{Now } T_{r+1} \ge T_{r+1} \text{ if } 8 - r \ge 2r
$$

$$
\Rightarrow 3r \le 8 \Rightarrow r \le 2\frac{2}{3}
$$

$$
\therefore T_1 \le T_2 \le T_3 \ge T_4 \ge T_5 \dots
$$

 \therefore Numerical value of T₃ is greatest.

Ans. [C]

Ans.

1 If
$$
|x| < 1/2
$$
, then expansion of $(1-2x)^{1/2}$ is.
\n(A) $1-x-\frac{1}{2}x^2$ (B) $1-x+\frac{1}{2}x^2$
\n(C) $1+x-\frac{1}{2}x^2$ (D) None of these
\n**Sol.** $(1-2x)^{1/2} = 1+\frac{1}{2}(-2x)+\frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}(-2x^2)+\dots$
\n**Sol.** $(1-2x)^{1/2} = 1+\frac{1}{2}(-2x)+\frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}(-2x^2)+\dots$
\n**1 1 2 2 3 3 4 4 5 4 5 6 6 7 7 8 8 8 9 9 1**

Sol. If
$$
(1 + x)^n = 1 + \frac{1}{5} + \frac{1.3}{5.10} + \frac{1.3.5}{5.10.15} + \dots
$$

\nthen $nx = 1/5$
\n $\frac{n(n-1)}{2!}x^2 = \frac{1.3}{5.10} \Rightarrow n = -\frac{1}{2}, x = -\frac{2}{5}$
\n $\therefore S = [1 + (-2/5)]^{-1/2}$
\n $= (3/5)^{-1/2} = \sqrt{\frac{5}{3}}$ Ans. [C]

The coefficient of $x⁴$ in the expansion of $1 + 2x + 3x^2$

(a) 13
\n(b) 14
\n(c) 20
\n(a) 13
\n(b) 14
\n(c) 20
\n14
\n(a) 13
\n(b) 14
\n(c) 20
\n15
\n(a) 14
\n(b) 22
\n(b) 22
\n(c) 20
\n15
\n16
\n17
\n(a) 13
\n(b) 14
\n(c) 20
\n18
\n19
\n20
\n19
\n
$$
22
$$

\n 15
\n 20
\n 20 <

Ans. [D]

 $= 22$

- If the coefficients of rth and $(r + 1)$ th terms in the xpansion of $(3 + 7x)^{29}$ are equal, then r equals-(B) 21 (B) 21 (D) 14 (D) None of these
	- **Sol.** We have $T_{r+1} = {}^{29}C_r 3 {}^{29-r} (7x)$ ^r = $({}^{29}C_r 3 {}^{29-r} .7^r)$ x^r \therefore a_r = coefficient of (r +1)th term $= {}^{29}C_r$ 3^{29-r} . 7^r Now, $a_r = a_{r-1}$ \Rightarrow 29C_r. 3^{29-r}.7^r = ²⁹C_{r-1}. 3^{30-r}.7^{r-1} \Rightarrow $\frac{{^{29}\mathrm{C_r}}}{{^{29}\mathrm{C_{r-1}}}}$ C C $=\frac{3}{7}$ $rac{3}{7}$ \Rightarrow $rac{30}{7}$ $\frac{30-r}{7} = \frac{3}{7}$ $\frac{3}{5} \Rightarrow r = 21.$

Ans. [B]

- **Ex.17** If the fourth term in the expansion of $(px + 1/x)^n$ is 5/2 then the value of n and p are respectively-
	- $(A) 6, 1/2$ (B) 1/2, 6 (C) 3, 1 (D) 3, $1/2$

Sol. The fourth term in expansion of
$$
(px + 1/x)^n
$$

 $T_4 = {}^nC_3 \cdot (px)^{n-3} (1/x)^3 = 5/2.$ \Rightarrow (ⁿC₃·p^{n–3}) . $x^{n-6} = 5/2$. x^0

10 $\frac{1}{2} \cdot \frac{1}{10}$

 $= 10$

 \mathbf{r}

 $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ L $= 10$ [1– 0.005 – 0.0000125] $= 10$ [0.9949] = 9.949

2!

Ans. [A]

J

l

I

Ex.14
$$
1 + \frac{1}{5} + \frac{1.3}{5.10} + \frac{1.3.5}{5.10.15} + \dots
$$
 is equal to
\n(A) $\frac{1}{\sqrt{5}}$ (B) $\frac{1}{\sqrt{2}}$
\n(C) $\sqrt{\frac{5}{3}}$ (D) $\sqrt{5}$

Compairing the coefficient of x and constant term $n-6=0 \Rightarrow n=6$ and nC_3 (p) ${}^{n-3}$ = 5/2 putting $n = 6$ in it $6C_3 p^3 = 5/2 \Rightarrow p^3 = 1/8 \Rightarrow p^3 = (1/2)^3$ \Rightarrow p = 1/2 **Ans.** [A] **Ex.18** The coefficient of x^4 in the expansion of

 $(1 + x + x² + x³)ⁿ$ is- (A) ⁿC₄ (B) ${}^nC_4 + {}^nC_2$ (C) ${}^nC_1 + {}^nC_2 + {}^nC_4$ ⁿC₂ (D) ${}^nC_4 + {}^nC_2 + {}^nC_1$. nC_2 **Sol.** Exp. = $(1+x)^n (1+x^2)^n$ $= (1 + {}^{n}C_1x + {}^{n}C_2x^2 + {}^{n}C_3x^3 + {}^{n}C_4x^4 + \dots + x^n)$ $(1 + {}^nC_1x^2 + {}^nC_2x^4 + ... + x^{2n})$ \therefore Coefficient of $x^4 = {}^nC_4 + {}^nC_2$ ${}^nC_1 + {}^nC_2$

Ans. [D]

Ex. 19 If $(2-x-x^2)^{2n} = a_0 + a_1x + a_2x^2 + a_3x^3 + ...$, then the value of $a_0 + a_2 + a_4 + \dots$ is-(A) 2^{n-1} (B) 2^{2n} (C) 2^{2n-1} (D) None of these **Sol.** Putting $x = 1$ and $x = -1$ in the given expansion, we get $a_0 + a_1 + a_2 + a_3 + a_4 + \dots = 0$ $a_0 - a_1 + a_2 - a_3 + a_4 - \dots = 2^{2n}$ Adding $2(a_0 + a_2 + a_4 + \dots) = 2^{2n}$ \implies $a_0 + a_2 + a_4 + ... = 2^{2n-1}$ **Ans. [C]**

Ex.20 $(x + \sqrt{x^3} - 1)^5 + (x - \sqrt{x^3} - 1)^5$ is a polynomial of the order of - (A) 5 (B) 6 (C) 7 (D) 8 **Sol.** $(x + \sqrt{x^3 - 1})^5 + (x - \sqrt{x^3 - 1})^5$ $= 2 [x^5 + 5C_2 \cdot x^3 (x^3 - 1) + 5C_4 x(x^3 - 1)^2]$ $= 2 [x^5 + 10x^3 (x^3 - 1) + 5x(x^6 - 2x^3 + 1)]$ $= 10 x^{7} + 20x^{6} + 2x^{5} - 20x^{4} - 20x^{3} + 10x$

 \therefore polynomial has order of 7.

Ans. [C]

Ex.21 If x^m occurs in the expansion of $\left(x + \frac{1}{2}\right)^{2n}$ x^2 $x + \frac{1}{2}$ J $\left(x+\frac{1}{2}\right)$ l $\left(x + \frac{1}{2}\right)^{2n}$, the

coefficient of x^m is -

(A)
$$
\frac{(2n)!}{m!(2n-m)!}
$$

\n(B) $\frac{(2n)! \ 3! \ 3!}{(2n-m)!}$
\n(C) $\frac{(2n)!}{\left(\frac{2n-m}{3}\right)! \left(\frac{4n+m}{3}\right)!}$
\n(D) None of these

Sol. The general term in the expansion of the given expression is

$$
T_{r+1} = {}^{2n}C_r x^{2n-r} \left(\frac{1}{x^2}\right)^r = {}^{2n}C_r x {}^{2n-3r}
$$

For the coefficient of x^m , we must have

$$
2n - 3r = m \Rightarrow r = \frac{2n - m}{3}
$$

So, coefficient of x^m

$$
= {}^{2n}C_{\frac{2n-m}{3}} = \frac{(2n)!}{\left(\frac{2n-m}{3}\right)! \left(\frac{4n+m}{3}\right)!}
$$

Ans. [C]

Ex.22 If the third term in the expansion of $\left[x + x^{\log_{10} x}\right]^5$ is equal to 10,00,000, then x equals- $(A)10$ (B) $10²$ $(C)10³$ (D) No such x exists

Sol. Here $T_3 = {}^5C_2x^3 (x^{\log_{10}x})^2 = 10^6$ or x^3 $x^{2\log_{10} x} = 10^5$ Taking log of both sides, we get $3 \log_{10} x + 2 (\log_{10} x)^2 = 5$ or $2(\log_{10}x)^2 + 5 \log_{10}x - 2 \log_{10}x - 5 = 0$ or $(log_{10} x - 1)$ (2 $log_{10} x + 5 = 0$ or $x = 10$ or $2 \log_{10} x + 5 = 0$

[A]

Ex.23 The greatest integer in the expansion of $(1+x)^{2n+2}$ is**Ans.**

(A)
$$
\frac{(2n)!}{(n!)^2}
$$

\n(B) $\frac{(2n+2)!}{[(n+1)!]^2}$
\n(C) $\frac{(2n+2)!}{n!(n+1)!}$
\n(D) $\frac{(2n)!}{n!(n+1)!}$

Sol. The coefficient of $(r+1)$ th term in the expansion of $(1+x)^{n+2}$ will be maximum.

If
$$
r \leq \frac{(2n+2)+1}{2}
$$

\n $r \leq (n+1) + 1/2$
\n $r = n + 1$
\n $=$ Maximum coefficient $= 2n+2C_{n+1}$
\n $= \frac{(2n+2)!}{(n+1)!(n+1)!}$
\n $= \frac{(2n+2)!}{[(n+1)!]^2}$ Ans.

[B]

Ex.24 The greatest integer which divides $101^{100} - 1$ is (A) 100 (B) 1000 (C) 10,000 (D) 100,000 **Sol.** $101^{100} - 1 = (100+1)^{100} - 1$ $= 100^{100} + {^{100}C_1} \cdot 100^{99} + {^{100}C_2} \cdot 100^{98} + ... + 1 - 1$ $= 100^{100} + {100 \choose 1} 100^{99} + {100 \choose 2} 100^{98} + ...$

$$
100C_{99} \t1001
$$

= 100(100⁹⁹ + ¹⁰⁰C₁ 100⁹⁸+....+¹⁰⁰C₉₉)
= 100 (100⁹⁹ + ¹⁰⁰C₁100⁹⁸+....+¹⁰⁰C₉₈ 100 + ¹⁰⁰C₉₉)
=100(100⁹⁹+¹⁰⁰C₁100⁹⁸+....+¹⁰⁰C₉₈100 + 100)
= 100² (100⁹⁸ + ¹⁰⁰C₁ 100⁹⁷+...+ ¹⁰⁰C₂ + 1)
... the greatest integer which divides given
number = 100² = 10,000

Ans.[C]

Ex.25 The sum of the rational terms in the expansion of $(\sqrt{2} + 3^{1/5})^{10}$ is equal to (A) 40 (B) 41 (C) 42 (D) 0 **Sol.** Here $T_{r+1} = {}^{10}C_r (\sqrt{2}) {}^{10-r} (3^{1/5})^r$, where $r = 0, 1, 2, \dots, 10$. We observe that in general term T_{r+1} powers of 2 and 3 are $\frac{1}{2}$ $\frac{1}{2}$ (10–r) and $\frac{1}{5}$ 1
- r respectively and $0 \le r \le 10$. So both these powers will be integers together only when $r = 0$ or 10 \therefore sum of required terms

$$
= T_1 + T_{11}
$$

= ${}^{10}C_0(\sqrt{2})^{10} + {}^{10}C_{10} (3^{1/5})^{10}$
= 32 + 9 = 41

Ans.

[B]

Ex .26 The coefficient of the term independent of x in
\nthe expansion of
$$
(1 + x + 2x^3) \left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9
$$
 is-
\n(A) 1/3 (B) 19/54 (C) 17/54 (D)
\n1/4
\n**Sol.** $(1 + x + 2x^3) \left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$
\n $= (1 + x + 2x^3) \left[\sum_{r=0}^{9} {}^9C_r \left(\frac{3}{2}x^2\right)^{9-r} \left(-\frac{1}{3x}\right)^r\right]$
\n $= (1 + x + 2x^3) =$
\n $+ \left[\sum_{r=0}^{9} {}^9C_r \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^r x^{19-3r}\right] +$
\n $2 \left[\sum_{r=0}^{9} {}^9C_r \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^r x^{21-3r}\right]$

Clearly, first and third expansions contain term independent of x and are obtained by equation $18 - 3r = 0$ and $21 - 3r = 0$ respectively. So, coefficient of the term independent of

Ξ.

 $x = {}^{9}C_6$ 9–6 2 3° I J $\begin{pmatrix} 3 \\ - \end{pmatrix}$ l $(3)^{9-6}$ $(1)^{6}$ 3 1 I J $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ l $\left(-\frac{1}{2}\right)^{\circ}$ + 2 I \backslash L ſ I $\left(\frac{1}{1}\right)$ $\begin{bmatrix} 9-i \\ -1 \end{bmatrix}$ $\begin{pmatrix} 3 \\ - \end{pmatrix}$ $(3)^{9-7}$ $(1)^{7}$ 9C_7 1 $C_7\left(\frac{3}{2}\right)$ $-\left(\frac{1}{3}\right)$ $=\frac{7}{18}$ $\frac{7}{8}$ – $\frac{7}{27}$ $\frac{7}{27} = \frac{17}{54}$ 17

I

J

J

3

l

J

2

l

 $\begin{bmatrix} 2 & 1 & 3 \end{bmatrix}$

l

 $\begin{bmatrix} 2 & -r(2) & 3 \end{bmatrix}$

2

r=0

L

l

J

$$
Ans. [C]
$$

Ex.27 If $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$, then $3C_0$ $-5C_1 + 7C_2 + ... + (-1)^n (2n+3) C_n$ equals-(A) 1 (B) $2(2n + 3) 2^n$ (C) $(2n + 3) 2^{n-1}$ (D) 0 **Sol.** We have

$$
3C_0 - 5C_1 + 7C_2 + ... + (-1)^n (2n+3) C_n
$$

= 3C_0 - 3C_1 + 3C_2 + ... + (-1)^n 3C_n - 2C_1 + 4C_2
+ ... + (-1)^n 2n C_n
= 3(C_0 - C_1 + C_2 + ... + (-1)^n C_n)
-2(C_1 - 2C_2 + ... + (-1)^n nC_n)
= 3 \times 0 - 2 \times 0 = 0. \qquad \text{Ans. [D]}

Ex.28 If the sum of the coefficients in the expansion of $(1+2x)^n$ is 6561, the greatest term in the expansion for $x = 1/2$ is -(A) 4^{th} (B) 5^{th} (C) $6th$ (D) None of these

Sol. Sum of the coefficients in the expansion of \Rightarrow $(1+ 2x)^n = 6561$ \Rightarrow $(1+2x)^n = 6561$ when $x = 1$ \Rightarrow 3ⁿ = 6561 \Rightarrow 3ⁿ = 3⁸ \Rightarrow n = 8 Now, r r+1 $\frac{T_{r+1}}{T_r} = \frac{{}^{8}C_r (2x)^{1}}{{}^{8}C_{r-1} (2x)^{r-1}}$ ${}^{8}C_{r}(2x)^{r}$ $C_{r-1}(2x)$ $C_r(2x)$ $_{-1}(2x)^{1}$ $=\frac{2}{r}$ $\frac{9-r}{2x}$. 2x \Rightarrow r r+1 $\frac{T_{r+1}}{T_{r+1}} = \frac{9-r}{r}$ $\frac{9-r}{x}$ [: x = 1/2] $\ddot{\cdot}$ r r+1 T $\frac{T_{r+1}}{T} > 1 \Rightarrow \frac{9-r}{r}$ $\frac{9-r}{r} > 1$ \Rightarrow 9 – r > r \Rightarrow 2r < 9 \Rightarrow r < 4 $\frac{1}{2}$ 1

Hence, 5th term is the greatest term.

Ans. [B]

Ex.29 If
$$
(r + 1)
$$
th term is $\frac{3.5...(2r-1)}{r!} \left(\frac{1}{5}\right)^r$, then this is
the term of binomial expansion-

(A)
$$
\left(1-\frac{2}{5}\right)^{1/2}
$$
 \t(B) $\left(1-\frac{2}{5}\right)^{-1/2}$
(C) $\left(1+\frac{2}{5}\right)^{-1/2}$ \t(D) $\left(1+\frac{2}{5}\right)^{1/2}$

Sol.

$$
T_{r+1} = \frac{3.5...(2r-1)}{r!} \left(\frac{1}{5}\right)^r
$$

$$
= \frac{\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)\left(\frac{5}{2}\right)...\left(\frac{2r-1}{2}\right)}{r!} \left(\frac{2}{5}\right)^r
$$