BINOMIAL THEOREM

(KEY CONCEPTS + SOLVED EXAMPLES)

BINOMIAL THEOREM

- 1. Binomial Expressions
- 2. Binomial Theorem
- 3. Binomial Theorem for positive Integral Index
- 4. Number of Terms in the Expansion of (x + y + z)n
- 5. Middle Term in the Expansion of (x + a)n
- 6. Determination of Particular Term in the Expansion
- 7. Determination of Term from the End in Expansion of (x + a)n
- 8. Binomial Coefficients & Their Properties
- 9. Greatest Term in the Expansion of (x + a)n
- 10. Binomial Theorem for Any Index

KEY CONCEPTS

1. Binomial Expressions

An algebraic expression containing two terms is called a **binomial expression**.

For example, 2x + 3, $x^2-x/3$, x + a etc. are

Binomial Expressions.

2. Binomial Theorem

The rule by which any power of a binomial can be expanded is called the **Binomial Theorem**.

3. Binomial Theorem for Positive Integral Index

If x and a are two real numbers and n is a positive integer then

 $(x + a)^n = {}^nC_0 x^n a^0 + {}^nC_1 x^{n-1} a + {}^nC_2 x^{n-2} a^2 + \dots + {}^nC_r x^{n-r} a^r + \dots + {}^nC_n x^0 a^n.$

Where ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$, ${}^{n}C_{3}$,...., ${}^{n}C_{r}$ are called **binomial coefficients** which can be denoted by C_{0} , C_{1} , C_{2} , C_{3} , C_{r}

3.1 General Term : In the expansion of $(x+a)^n$, $(r+1)^{th}$ term is called the **general term** which can be represented by T_{r+1} .

 $\mathbf{T}_{r+1} = {}^{n}\mathbf{C}_{r} \mathbf{x}^{n-r} \mathbf{a}^{r}$

 $= {}^{n}C_{r}($ first term $)^{n-r}$ (second term $)^{r}$.

3.2 Characteristics of the expansion of $(x + a)^n$

Observing to the expansion of $(x + a)^n$, $n \in N$, we find that-

- (i) The total number of terms in the expansion = (n + 1) i.e. one more than the index n.
- (ii) In every successive term of the expansion the power of x (first term) decreases by 1 and the power of (second term) increases by 1. Thus in every term of the expansion, the sum of the powers of x and a is equal to n (index).
- (iii) The binomial coefficients of the terms which are at equidistant from the beginning and from the end are always equal i.e.

 ${}^{n}C_{r} = {}^{n}C_{n-r}$

Thus ${}^{n}C_{0} = {}^{n}C_{n}$, ${}^{n}C_{1} = {}^{n}C_{n-1}$,

 ${}^{n}C_{2} = {}^{n}C_{n-2}$ etc.

(iv) ${}^{n}C_{r-1} + {}^{n}C_{r} = {}^{n+1}C_{r}$

3.3 Some deduction of Binomial Theorem :

(i) Expansion of $(x-a)^n$.

 $(x-a)^n = {}^nC_0 x^n a^0 - {}^nC_1 x^{n-1} a^1 + {}^nC_2 x^{n-2} a^2 -$

 ${}^{n}C_{3}x^{n-3}a^{3} + ... + (-1)^{r} {}^{n}C_{r}x^{n-r}a^{r} + ... + (-1)^{n} {}^{n}C_{n} x^{o} a^{n}$

This expansion can	n
--------------------	---

obtained

by

putting

(-a) in place of a in the expansion of $(x+a)^n$.

General term = $(r + 1)^{th}$ term

$$T_{r+1} = {}^{n}C_{r}(-1)^{r}$$
. $x^{n-r} a^{r}$

(ii) By putting x = 1 and a = x in the expansion of $(x + a)^n$, we get the following result $(1+x)^n = {}^nC_0 + {}^nC_1 x + {}^nC_2 x^2 + \dots + {}^nC_r x^r + \dots + {}^nC_n x^n$

be

which is the standard form of binomial expansion.

$$\begin{array}{l} \mbox{General term} = (r+1)^{th} \mbox{ term} \\ T_{r+1} = ^{n}C_r \ x^r \\ = \frac{n(n-1)(n-2).....(n-r+1)}{r!} \ .x^r \\ \mbox{(iii) By putting (-x) in place of x in the expansion of (1+x)^n \\ (1-x)^n & = \ ^nC_0 \ - \ ^nC_1 \ x \ + \ ^nC_2 \ x^2 \ - \ ^nC_3x^3 \ + \ + (-1)^r \ ^nC_rx^r \ +..... + \ ^nC_nx^n. \\ \mbox{General term} = (r+1)^{th} \ \ term \\ T_{r+1} = (-1)^r \ ^nC_r \ x^r \\ = \ (-1)^r \ \frac{n(n-1)(n-2).....(n-r+1)}{r!} \ .x^r \\ \mbox{4. Number of Terms in the Expansion of } \\ (x+y+z)^n \ \ cab expanded as \ (x+y+z)^n \ \ cab expanded as \ (x+y+z)^n = \{(x+y)+z\}^n \\ = \ (n+y)^n \ ^nC_1(x+y)^{n-1}.z \ ^nC_2(x+y)^{n-2}z^2 \ + \ + \ ^nC_n \ z^n. \\ = \ (n \ + \ 1) \ \ \ terms \ + \ n \ \ \ terms \ + \ (n-1) \ \ \ terms \ + \ + 1 \ \ term \\ \ \ .Total number of terms = (n+1)+n+(n-1)+...+1 \\ = \ \frac{(n+1)(n+2)}{2} \end{array}$$

5. Middle Term in the Expansion of $(x + a)^n$

(a) If n is even, then the number of terms in the expansion i.e. (n+1) is odd, therefore, there will be only one middle

term which is
$$\left(\frac{n+2}{2}\right)^{\text{th}}$$
 term. i.e. $\left(\frac{n}{2}+1\right)^{\text{th}}$ term.
so middle term = $\left(\frac{n}{2}+1\right)^{\text{th}}$ term.

(b) If n is odd, then the number of terms in the expansion i.e. (n + 1) is even, therefore there will be two middle terms which are

$$=\left(\frac{n+1}{2}\right)^{\text{th}}$$
 and $\left(\frac{n+3}{2}\right)^{\text{th}}$ term.

Note: (i) When there are two middle terms in the expansion then their Binomial coefficients are equal. (ii) Binomial coefficient of middle term is the greatest Binomial coefficient.

6. To Determine a Particular Term in the Expansion

In the expansion of $\left(x^{\alpha} \pm \frac{1}{x^{\beta}}\right)^{n}$, if x^{m} occurs in T_{r+1} , then r is given by $n \alpha - r (\alpha + \beta) = m$ $\Rightarrow r = \frac{n\alpha - m}{\alpha + \beta}$ Thus in above expansion if constant term i.e. the term which is independent of x, occurs in T_{r+1}

then r is determined by

$$n \alpha - r (\alpha + \beta) = 0$$
$$\implies r = \frac{n\alpha}{\alpha + \beta}$$

7. To Find a Term the end in the Expansion of $(x + A)^{N}$

It can be easily seen that in the expansion of $(x+a)^n$. $(r+1)^{th}$ term from end = $(n-r+1)^{th}$ term from beginning. i.e. $T_{r+1}(E) = T_{n-r+1}$ (B) $\therefore T_r(E) = T_{n-r+2}$ (B)

8. Binomial Coefficients & Their Properties

In the expansion of $(1 + x)^n$; i.e. $(1 + x)^n = {}^nC_0 + {}^nC_1x + \dots + {}^nC_rx^r + \dots + {}^nC_nx^n$

 $\begin{array}{ccc} The & coefficients & {}^nC_0, & {}^nC_1 & , {}^nC_n & of & various & powers \\ of x, are called binomial coefficients and they are written as & \end{array}$

$$C_0, C_1, C_2, \dots, C_n$$

Hence

$$(1+x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + \dots + C_{r}x^{r} + \dots + C_{n}x^{n} \qquad \dots (1)$$

Where
$$C_0 = 1$$
, $C_1 = n$, $C_2 = \frac{n(n-1)}{2!}$

$$C_r = \frac{n(n-1)....(n-r+1)}{r!}, \ C_n = 1$$

Now, we shall obtain some important expressions involving binomial coefficients-

(a) Sum of Coefficient : putting x = 1 in (1), we get

 $C_0 + C_1 + C_2 + \dots + C_n = 2^n \qquad \dots (2)$

- (b) Sum of coefficients with alternate signs : putting x = -1 in(1) We get $C_0-C_1+C_2-C_3 + \dots = 0$...(3)
- (c) Sum of coefficients of even and odd terms: from (3), we have

 $C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots$ (4)

i.e. sum of coefficients of even and odd terms are equal.

from (2) and (4)

 $\implies \ \ C_0 + C_2 + \ldots = C_1 + C_3 + \ldots = 2^{n-1}$

(d) Sum of products of coefficients : Replacing x by 1/x in (1) We get

$$\left(1+\frac{1}{x}\right)^{n} = C_{0} + \frac{C_{1}}{x} + \frac{C_{2}}{x^{2}} + \dots + \frac{C_{n}}{x^{n}} + \dots$$

...(5)

Multiplying (1) by (5), we get

$$\frac{(1+x)^{2n}}{x^n} = (C_0 + C_1 x + C_2 x^2 + \dots)$$

$$(C_0 + \frac{C_1}{x} + \frac{C_2}{x} + \dots)$$

Now, comparing coefficients of x^r on both the sides, we get $C_0C_r + C_1C_{r+1} + \dots + C_{n-r}C_n = {}^{2n}C_{n-r}$

$$= \frac{2n!}{(n+1)!(n-r)!} \qquad ...(6)$$

(e) Sum of squares of coefficients : putting r = 0 in (6), we get

$$C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = \frac{2n!}{n!n!}$$

- (f) putting r = 1 in (6), we get $C_0 C_1 + C_1 C_2 + C_2 C_3 + \dots + C_{n-1} C_n = {}^{2n}C_{n-1}$ $= \frac{2n!}{(n+1)!(n-1)!}$...(7)
- (g) putting r = 2 in (6), we get $C_0C_2 + C_1C_3 + C_2C_4 + \dots + C_{n-2}C_n = {}^{2n}C_{n-2}$ $= \frac{2n!}{(n+2)!(n-2)!}$... (8)
- (i) adding (2) and (9) $C_{0}+ 2C_{1} + 3C_{2} + + {}^{(n+1)}C_{n} = 2 {}^{n-1}(n+2)(11)$
- (j) Integrating (1) w.r.t. x between the limits 0 to 1,

$$\begin{bmatrix} \frac{(1+x)^{n+1}}{n+1} \end{bmatrix}_{0}^{1} = \begin{bmatrix} C_{0}x + C_{1}\frac{x^{2}}{2} + C_{2}\frac{x^{3}}{3} + \dots + \frac{C_{n}X^{n+1}}{n+1} \end{bmatrix}_{0}^{1}$$

$$\Rightarrow C_{0} + \frac{C_{1}}{2} + \frac{C_{2}}{3} + \dots + \frac{C_{n}}{n+1} = \frac{2^{n+1}-1}{n+1} \qquad \dots (12)$$
Integrating
(1) w.r.t.
$$\begin{bmatrix} \frac{(1+x)^{n+1}}{n+1} \end{bmatrix}_{0}^{0}$$

$$\begin{bmatrix} n+1 \end{bmatrix}_{-1} = \begin{bmatrix} C_0 x + C_1 \frac{x^2}{2} + C_2 \frac{x^3}{3} + \dots + \frac{C_n x^{n+1}}{n+1} \end{bmatrix}_{-1}^{0}$$

$$\Rightarrow C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \frac{C_3}{4} + \dots + \frac{(-1)^n \cdot C_n}{n+1} = \frac{1}{(n+1)} \dots (13)$$

9. Greatest Term in the Expansion of $(X + \overline{A})^N$

we get,

Х

the

between

(a) The term in the expansion of $(x+a)^n$ of greatest coefficient

limits

$$= \begin{cases} T_{\frac{n+2}{2}}, \text{ when } n \text{ is even} \\ T_{\frac{n+1}{2}}, T_{\frac{n+3}{2}}, \text{ when } n \text{ is odd} \end{cases}$$

(b) The greatest term

$$= \begin{cases} T_p \And T_{p+1} \text{ when } \frac{(n+1)a}{x+a} = p \in Z \\ T_{q+1} \text{ when } \frac{(n+1)a}{x+a} \notin Z \text{ and } q < \frac{(n+1)a}{x+a} < q+1 \end{cases}$$

10. Binomial Theorem For Any Index

When n is a negative integer or a fraction then the expansion of a binomial is possible only when

- (i) Its first term is 1, and
- (ii) Its second term is numerically less than 1.

Thus when $n \notin N$ and |x| < 1, then it states

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!}x^{3}$$
$$+ \dots + \frac{n(n-1)(n-r+1)}{r!}x^{r} + \dots \infty$$

10.1General Term :

$$T_{r+1} = \frac{n(n-1)(n-2)....(n-r+1)}{r!} \cdot x^{r}$$

Note :

- (i) In this expansion the coefficient of different terms can not be expressed as ⁿC₀, ⁿC₁, ⁿC₂... because **n** is not a positive integer.
- (ii) In this case there are infinite terms in the expansion.

10.2 Some Important Expansions :

If |x| < 1 and $n \in Q$ but $n \notin N$, then

(a)
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$

(b)
$$(1-x)^n = 1 - nx + \frac{n(n-1)}{2!} x^2 - \frac{n(n-1)(n-2)}{3!} x^3 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!} (-x)^r + \dots$$

(c)
$$(1-x)^{-n} = 1 + nx + \frac{n(n+1)}{2!}x^2 + \frac{n(n+1)(n+2)}{3!}x^3 + \dots + \frac{n(n+1)\dots(n+r-1)}{r!}x^r + \dots$$

(d)
$$(1 + x)^{-n} = 1 - nx + \frac{n(n+1)}{2!}x^2 - \frac{n(n+1)(n+2)}{3!}x^3 + \dots + \frac{n(n+1)\dots(n+r-1)}{r!}(-x)^r + \dots$$

By putting n = 1, 2, 3 in the above results (c) and (d), we get the following results-

(e) $(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots + x^r + \dots$ General term $T_{r+1} = x^r$

- $\begin{array}{ll} \textbf{(f)} & (1+x)\,{}^{-1} = 1 x + x^2 \! x^3 +(\! \! x)\,{}^r + \\ & \textbf{General term } T_{r+1} = (-x)\,{}^r \end{array}$
- (g) $(1-x)^{-2} = 1+2x+3x^2+4x^3+....+(r+1)x^r+....$ General term $T_{r+1} = (r+1)x^r$
- $\begin{array}{ll} \textbf{(h)} & (1+x)^{-2} = 1{-}2x{+}3x^2 4x^3 {+}....{+}(r{+}1) \; ({-}x)^r {+} \; \\ & \textbf{General term } T_{r{+}1} = (r\;{+}1)\; ({-}x)^r. \end{array}$

(i)
$$(1-x)^{-3} = 1+3x + 6x^2 + 10x^3 + \dots + \frac{(r+1)(r+2)}{2!}x^r + \dots$$

General term $= \frac{(r+1)(r+2)}{2!}x^r$
(j) $(1+x)^{-3} = 1 - 3x + 6x^2 - 10x^3 + \dots + \frac{(r+1)(r+2)}{2!}(-x)^r + \dots$
General term $= \frac{(r+1)(r+2)}{2!}(-x)^r$.

P

SOLVED EXAMPLES

Ex.1 The first four terms of the expansion of $\left(ax - \frac{1}{bx^2}\right)^5 \text{ are-}$ (A) $a^5x^5 - 5\frac{a^4}{b}x^2 + 10\frac{a^3}{b^2x} - 10\frac{a^2}{b^3x^4}$ (B) $a^5x^5 + 5\frac{a^4}{b}x^2 - 10\frac{a^3}{b^2x} + 10\frac{a^2}{b^3x^4}$ (C) $a^5x^5 - 5\frac{a^4}{b}x^2 - 10\frac{a^3}{b^2x} - 10\frac{a^2}{b^3x^4}$ (D) $a^5x^5 + 5\frac{a^4}{b}x^2 + 10\frac{a^3}{b^2x} + 10\frac{a^2}{b^3x^4}$

Sol. $\left(ax - \frac{1}{bx^2}\right)^5$ = ${}^5C_0 (ax)^5 + {}^5C_1 (ax)^4 \left(-\frac{1}{bx^2}\right) + {}^5C_2 (ax)^3 \left(-\frac{1}{bx^2}\right)^2 + {}^5C_3 (ax)^2 \left(-\frac{1}{bx^2}\right)^2 + {}^$

$${}^{5}C_{2}(ax)^{3}\left(-\frac{1}{bx^{2}}\right)^{2} + {}^{5}C_{3}(ax)^{2}\left(-\frac{1}{bx^{2}}\right)^{3} + \cdots$$

= $a^{5}x^{5} - 5\frac{a^{4}}{b}x^{2} + 10\frac{a^{3}}{b^{2}x} - 10\frac{a^{2}}{b^{3}x^{4}} + \cdots$

Ans. [A]

Ex.2 The sixth term in the expansion of
$$(3x^2 - \frac{1}{2x})^{1/2}$$

is-
(A) $\frac{189}{4}x$ (B) $-\frac{189}{4}x$
(C) $\frac{189}{4}x^2$ (D) $\frac{189}{4}x^3$
Sol. T₆ = ${}^{8}C_{5}(3x^2)^{3}(-\frac{1}{2x})^{5}$
= $56 \times (27x^6) \times (-\frac{1}{32x^5})^{1/2}$
= $-\frac{189}{4}x$ Ans. [B]

Ex.3 If in the expansion of (1+ y)ⁿ, the coefficient of 5th, 6th and 7th terms are in A.P., then n is equal to-

(C) 8, 16 (D) None of these

- Sol. As given ${}^{n}C_{4}$, ${}^{n}C_{5}$, ${}^{n}C_{6}$ are in AP. ⇒ ${}^{n}C_{4} + {}^{n}C_{6} = 2$. ${}^{n}C_{5}$ ⇒ $\frac{n!}{(n-4)! \, 4!} + \frac{n!}{(n-6)! \, 6!} = 2 \frac{n!}{(n-5)! \, 5!}$ ⇒ 30 + (n-5) (n-4) = 2.6 (n-4)⇒ $n^{2} - 21n + 98 = 0$ ⇒ (n-7) (n-14) = 0∴ n = 7, 14 Ans. [B]
- Ex. 4 The sum of the coefficient of the terms of the expansion of polynomial $(1 + x 3x^2)^{2143}$ is-(A) 2^{2143} (B) 1 (C) -1 (D) 0 Sol. We get the sum of the coefficients of terms by
 - bi. We get the sum of the coefficients of terms by putting x = 1 in the polynomial $(1+x-3x^2)^{2143}$ ∴ $(1+1-3)^{2143} = (-1)^{2143}$ $= (-1)^{2142}$. (-1) $= [(-1)^2]^{1021}$. (-1) $= 1 \times -1 = -1$.

Ans. [C]

Ex.5 The middle term of the expansion $\left(x - \frac{2}{x}\right)^8$ is-(A) 560 (B) -560 (C) 1120 (D) -1120 Sol. Since (n = 8) is even then there is only one middle term i.e. $T_{\frac{8+2}{2}} = T_5$

$$T_5 = {}^{8}C_4(x)^4(-2/x)^4$$

= ${}^{8}C_4(-2)^4 = 16.{}^{8}C_4$
= 1120 Ans. [C]

Ex.6 The term independent from x in the expansion of

$$\left(\sqrt{x} - \frac{3}{x^2}\right)^{10}$$
 is -
(A) 3240 (B) - 3240

Sol. Since we require term independent from x

$$\therefore n\alpha - r (\alpha + \beta) = 0$$

$$\Rightarrow 10 \times \frac{1}{2} - r \left(\frac{1}{2} + 2\right) = 0$$

$$\Rightarrow r = 2 \text{ i.e. } 3^{rd} \text{ term.}$$

$$\therefore T_3 = {}^{10}C_2(\sqrt{x})^8 (-3/x^2)^2$$

$$= {}^{10}C_2.(-3)^2.x^\circ$$

$$= \frac{10.9}{2.1} \cdot 9 = 405$$
Ans. [C]
Ex.7 If in the expansion of $\left(x^3 - \frac{3}{x^2}\right)^{15}$ the rth term is independent of x, then r equals-
(A) 8 (B) 9
(C) 10 (D) None of these
Sol. If rth term is independent of x, then by the

$$15 \times 3 - (r - 1) (3 + 2) = 0$$

$$\Rightarrow \qquad r - 1 = 9 \Rightarrow r = 10.$$

Ans. [C]

Ex.8 If
$$(1+x)^n = C_0 + C_1x + C_2x^2 + ... + C_nx^n$$
 then
 $C_0 + 2C_1 + 3C_2 + ... + (n+1)C_n$ is equal to-
(A) $2^{n-1}(n+2)$ (B) $2^n(n+1)$
(C) $2^{n-1}(n+1)$ (D) $2^n(n+2)$

Sol. Putting x = 1 in the given expansion, we get $C_0 + C_1 + C_2 + C_3 + ...C_n = 2^n$...(1) Now, differentiating the given expansion with respect to x and then putting x = 1, we get $C_1 + 2C_2 + 3C_3 + ... + nC_n = n^{2n-1}$

$$C_1 + 2C_2 + 3C_3 + \dots + nC_n = n \cdot 2^{n-1}$$

...(2)
Given Exp.
=
$$C_0 + 2C_1 + 3C_2 + + (n + 1) C_n$$

= $(C_0 + C_1 + C_2 + + C_n)$
+ $(C_1 + 2C_2 + 3C_3 + + nC_n)$
= $2^n + n. 2^{n-1}$

[from (1) and (2)] = 2^{n-1} (n + 2)

[A]

Ex.9 If
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + ... + C_n x^n$$
, then

$$\frac{(C_0 + C_1)(C_1 + C_2)...(C_{n-1} + C_n)}{C_1 C_2 ... C_n}$$
 equals-
(A) $\frac{n^n}{(n+1)!}$ (B) $\frac{(n+1)^n}{n!}$
(C) $\frac{n^n}{n!}$ (D) None of these

Sol. The given expression

$$= \frac{C_0 C_1 C_2 \dots C_{n-1}}{C_1 C_2 \dots C_n} \cdot \left(1 + \frac{C_1}{C_0}\right) \left(1 + \frac{C_2}{C_1}\right)$$
$$\left(1 + \frac{C_3}{C_2}\right) \dots \left(1 + \frac{C_n}{C_{n-1}}\right)$$
$$= \left(1 + \frac{n}{1}\right) \left(1 + \frac{n-1}{2}\right) \left(1 + \frac{n-2}{3}\right) \dots \left(1 + \frac{1}{n}\right)$$
$$(\because C_0 = C_n)$$

$$= \frac{(n+1)^n}{n!} \qquad \text{Ans. [B]}$$

Ex.10 In the expansion of $(4 - 3x)^7$, the numerically greatest term at x = 2/3 is -(A) T₄ (B) T₅ (C) T₃ (D) T₂

 $\left(\frac{2}{3}\right)$

Sol.
$$(4-3x)^7 = 4^7 \left(1-\frac{3x}{4}\right)^7$$

 $\therefore \frac{T_{r+1}}{T_r} = \left|\frac{7-r+1}{r} \cdot \frac{-3x}{4}\right|$
 $= \frac{8-r}{2r}$ $\left(\because x =$
Now $T_{r+1} \ge T_{r+1}$ if $8-r \ge 2r$
 $\Rightarrow 3r \le 8 \Rightarrow r \le 2\frac{2}{3}$

$$\therefore \mathbf{T}_1 \leq \mathbf{T}_2 \leq \mathbf{T}_3 \geq \mathbf{T}_4 \geq \mathbf{T}_5 \dots \dots$$

 \therefore Numerical value of T₃ is greatest.

Ans. [C]

Ans.

$$\begin{aligned} & \text{Ex.11} \quad \text{If } |x| < 1/2, \text{ then expansion of } (1-2x)^{1/2} \text{ is-} \\ & (A) 1-x - \frac{1}{2}x^2 \dots \\ & (B) 1-x + \frac{1}{2}x^2 \dots \\ & (C) 1+x - \frac{1}{2}x^2 \dots \\ & (D) \text{ None of these} \end{aligned}$$

$$\begin{aligned} & \text{sol.} \quad \text{If } (1+x)^a = 1 + \frac{1}{5} + \frac{1.3}{5.10} + \frac{1.3.5}{5.10.15} + \dots \\ & \frac{10}{21}x^2 = \frac{1.3}{5.10} \end{bmatrix} \Rightarrow n = -\frac{1}{2}, x = -\frac{2}{5} \\ & \therefore \text{ Seccent in the expansion of these} \end{aligned}$$

$$\begin{aligned} & \text{sol.} \quad \text{If } (1+x)^a = 1 + \frac{1}{5} + \frac{1.3}{5.10} + \frac{1.3.5}{5.10.15} + \dots \\ & \frac{10}{21}x^2 = \frac{1.3}{5.10} \end{bmatrix} \Rightarrow n = -\frac{1}{2}, x = -\frac{2}{5} \\ & \therefore \text{ Seccent in the expansion of } (1-x)^{1/2} = 1 + \frac{1}{2}(-2x) + \frac{1}{2}(\frac{1}{2}-1)}{2!}(-2x^2) + \dots \end{aligned}$$

$$\begin{aligned} & \text{sol.} \quad \text{If } (1+x)^a = 1 + \frac{1}{5} + \frac{1.3}{5.10} + \frac{1.3.5}{5.10.15} + \dots \\ & \frac{10}{21}x^2 = \frac{1.3}{5.10} \end{bmatrix} \Rightarrow n = -\frac{1}{2}, x = -\frac{2}{5} \\ & \therefore \text{ Seccent in the expansion of } (1-2x)^{1/2} = 1 + \frac{1}{2}(-2x) + \frac{1}{2}(\frac{1}{2}-1)}{2!}(-2x^2) + \dots \end{aligned}$$

$$\begin{aligned} & \text{ sol.} \quad \text{If } (1+x)^a = 1 + \frac{1}{5} + \frac{1.3}{5.10} + \frac{1.3.5}{5.10.15} + \dots \\ & \frac{10}{21}x^2 = \frac{1}{2}x^2 - \frac{1}{2}x^2 + \frac{$$

Ans. [C]

(B) 14 (D) 22

 \therefore Coefficient of $x^4 = 5 + 8 + 9 = 22$

(D) None of these

Ans. [D]

(B) 21

- Ex.17 If the fourth term in the expansion of $(px + 1/x)^n$ is 5/2 then the value of n and p are respectively-
 - (A) 6, 1/2 (B) 1/2, 6 (C) 3, 1 (D) 3, 1/2

Sol. The fourth term in expansion of $(px + 1/x)^n$

> $T_4 = {}^{n}C_3 \cdot (px)^{n-3} (1/x)^3 = 5/2.$ \Rightarrow (ⁿC₃.pⁿ⁻³). xⁿ⁻⁶ = 5/2. x⁰

Ex.14 $1 + \frac{1}{5} + \frac{1.3}{5.10} + \frac{1.3.5}{5.10.15} + \dots$ is equal to -(A) $\frac{1}{\sqrt{5}}$ (B) $\frac{1}{\sqrt{2}}$ (C) $\sqrt{\frac{5}{3}}$ (D) $\sqrt{5}$

= 10 [1 - 0.005 - 0.0000125]

Ans. [A]

= 10 [0.9949] = 9.949

Compairing the coefficient of x and constant term $n - 6 = 0 \Rightarrow n = 6$ and ${}^{n}C_{3}(p) {}^{n-3} = 5/2$ putting n = 6 in it $6C_{3} p^{3} = 5/2 \Rightarrow p^{3} = 1/8 \Rightarrow p^{3} = (1/2)^{3}$ $\Rightarrow p = 1/2$ Ans. [A] Ex.18 The coefficient of x⁴ in the expansion of $(1 + x + x^{2} + x^{3})^{n}$ is-

(A)
$${}^{n}C_{4}$$

(B) ${}^{n}C_{4} + {}^{n}C_{2}$
(C) ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{4} \cdot {}^{n}C_{2}$
(D) ${}^{n}C_{4} + {}^{n}C_{2} + {}^{n}C_{1} \cdot {}^{n}C_{2}$
Sol. Exp. = $(1 + x)^{n} (1 + x^{2})^{n}$
= $(1 + {}^{n}C_{1}x + {}^{n}C_{2}x^{2} + {}^{n}C_{3}x^{3} + {}^{n}C_{4}x^{4} + \dots + x^{n})$
 $(1 + {}^{n}C_{1}x^{2} + {}^{n}C_{2}x^{4} + \dots + x^{2n})$
 \therefore Coefficient of $x^{4} = {}^{n}C_{4} + {}^{n}C_{2} \cdot {}^{n}C_{1} + {}^{n}C_{2}$

Ans. [D]

Ex. 19 If $(2-x-x^2)^{2n} = a_0 + a_1x + a_2x^2 + a_3x^3 + ...,$ then the value of $a_0 + a_2 + a_4 + ...$ is-(A) 2^{n-1} (B) 2^{2n} (C) 2^{2n-1} (D) None of these Sol. Putting x = 1 and x = -1 in the given expansion, we get $a_0 + a_1 + a_2 + a_3 + a_4 + ... = 0$ $a_0 - a_1 + a_2 - a_3 + a_4 - ... = 2^{2n}$ Adding $2(a_0 + a_2 + a_4 + ...) = 2^{2n}$ $\Rightarrow a_0 + a_2 + a_4 + ... = 2^{2n-1}$ Ans. [C]

Ex.20 $(x + \sqrt{x^3 - 1})^5 + (x - \sqrt{x^3 - 1})^5$ is a polynomial of the order of -(A) 5 (B) 6 (C) 7 (D) 8 Sol. $(x + \sqrt{x^3 - 1})^5 + (x - \sqrt{x^3 - 1})^5$ $= 2 [x^5 + 5C_2 \cdot x^3 (x^3 - 1) + 5C_4 x (x^3 - 1)^2]$ $= 2 [x^5 + 10x^3 (x^3 - 1) + 5x(x^6 - 2x^3 + 1)]$ $= 10 x^7 + 20x^6 + 2x^5 - 20x^4 - 20x^3 + 10x$ \therefore polynomial has order of 7.

Ans. [C]

Ex.21 If x^m occurs in the expansion of $\left(x + \frac{1}{x^2}\right)^{2n}$, the

coefficient of x^m is -

(A)
$$\frac{(2n)!}{m!(2n-m)!}$$

(B) $\frac{(2n)! \ 3! \ 3!}{(2n-m)!}$
(C) $\frac{(2n)!}{\left(\frac{2n-m}{3}\right)!\left(\frac{4n+m}{3}\right)!}$
(D) None of these

Sol. The general term in the expansion of the given expression is

$$T_{r+1} = {}^{2n}C_r x^{2n-r} \left(\frac{1}{x^2}\right)^r = {}^{2n}C_r x^{2n-3r}$$

For the coefficient of x^m, we must have

$$2n - 3r = m \Longrightarrow r = \frac{2n - m}{3}$$

So, coefficient of x^m

$$= {}^{2n} C_{\frac{2n-m}{3}} = \frac{(2n)!}{\left(\frac{2n-m}{3}\right)! \left(\frac{4n+m}{3}\right)!}$$

Ans. [C]

Ex.22 If the third term in the expansion of $\begin{bmatrix} x + x^{\log_{10} x} \end{bmatrix}^5$ is equal to 10,00,000, then x equals-(A)10 (B) 10² (C)10³ (D) No such x exists

Sol. Here $T_3 = {}^5C_2 x^3 (x^{\log_{10} x})^2 = 10^6$ or $x^3 x^{2\log_{10} x} = 10^5$ Taking log of both sides, we get $3 \log_{10} x + 2 (\log_{10} x)^2 = 5$ or $2(\log_{10} x)^2 + 5 \log_{10} x - 2 \log_{10} x - 5 = 0$ or $(\log_{10} x - 1) (2 \log_{10} x + 5) = 0$ or x = 10 or $2 \log_{10} x + 5 = 0$

[A]

Ex.23 The greatest integer in the expansion of $(1+x)^{2n+2}$ is-

Ans.

(A)
$$\frac{(2n)!}{(n!)^2}$$
 (B) $\frac{(2n+2)!}{[(n+1)!]^2}$
(C) $\frac{(2n+2)!}{n!(n+1)!}$ (D) $\frac{(2n)!}{n!(n+1)!}$

Sol. The coefficient of $(r+1)^{th}$ term in the expansion of $(1+x)^{n+2}$ will be maximum.

If
$$r \le \frac{(2n+2)+1}{2}$$

 $r \le (n+1) + 1/2$
 $r = n+1$
= Maximum coefficient = ${}^{2n+2}C_{n+1}$
= $\frac{(2n+2)!}{(n+1)!(n+1)!}$
= $\frac{(2n+2)!}{[(n+1)!]^2}$ Ans.

[B]

Ex.24 The greatest integer which divides $101^{100} - 1$ is (A) 100 (B) 1000 (C) 10,000 (D) 100,000 Sol. $101^{100} - 1 = (100+1)^{100} - 1$ $= 100^{100} + ^{100}C_1 \ 100^{99} + ^{100}C_2 \ 100^{98} + ... + 1 - 1$ $= 100^{100} + ^{100}C_1 \ 100^{99} + ^{100}C_2 \ 100^{98} + ... + 1$

$${}^{100}C_{99} \ 100^{1}$$

= 100(100⁹⁹ + ¹⁰⁰C₁ 100⁹⁸ + + ¹⁰⁰ C₉₉)
= 100 (100⁹⁹ + ¹⁰⁰C₁100⁹⁸ + +
¹⁰⁰C₉₈ 100 + ¹⁰⁰C₉₉)
=100(100⁹⁹ + ¹⁰⁰C₁100⁹⁸ + + ¹⁰⁰C₉₈100 + 100)
= 100² (100⁹⁸ + ¹⁰⁰C₁ 100⁹⁷ + ... + ¹⁰⁰C₂ + 1)
 \therefore the greatest integer which divides given
number = 100² = 10,000

Ans.[C]

Ex.25 The sum of the rational terms in the expansion of $(\sqrt{2} + 3^{1/5})^{10}$ is equal to (A) 40 (B) 41 (C) 42 (D) 0 **Sol.** Here $T_{r+1} = {}^{10}C_r (\sqrt{2})^{10-r} (3^{1/5})^r$, where r = 0, 1, 2, ..., 10. We observe that in general term T_{r+1} powers of 2 and 3 are $\frac{1}{2}(10-r)$ and $\frac{1}{5}r$ respectively and $0 \le r \le 10$. So both these powers will be integers together only when r = 0 or 10 \therefore sum of required terms

$$= T_1 + T_{11}$$

= ${}^{10}C_0(\sqrt{2}){}^{10} + {}^{10}C_{10}(3^{1/5}){}^{10}$
= $32 + 9 = 41$

Ans.

[B]

Ex.26 The coefficient of the term independent of x in
the expansion of
$$(1 + x + 2x^3) \left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$$
 is-
(A) 1/3 (B) 19/54 (C) 17/54 (D)
1/4
Sol. $(1 + x + 2x^3) \left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$
 $= (1 + x + 2x^3) \left[\sum_{r=0}^9 {}^9C_r \left(\frac{3}{2}x^2\right)^{9-r} \left(-\frac{1}{3x}\right)^r\right]$
 $= (1 + x + 2x^3) =$
 $+ \left[\sum_{r=0}^9 {}^9C_r \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^r x^{19-3r}\right] +$
 $2 \left[\sum_{r=0}^9 {}^9C_r \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^r x^{21-3r}\right]$

Clearly, first and third expansions contain term independent of x and are obtained by equation 18 - 3r = 0 and 21-3r = 0 respectively. So, coefficient of the term independent of

$$\mathbf{x} = {}^{9}\mathbf{C}_{6} \left(\frac{3}{2}\right)^{9-6} \left(-\frac{1}{3}\right)^{6} + 2$$
$$\left({}^{9}\mathbf{C}_{7} \left(\frac{3}{2}\right)^{9-7} - \left(\frac{1}{3}\right)^{7}\right) = \frac{7}{18} - \frac{7}{27} = \frac{17}{54}$$

Ans. [C]

Ex.27 If $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$, then $3C_0 - 5C_1 + 7C_2 + \dots + (-1)^n (2n+3) C_n$ equals-(A) 1 (B) $2(2n+3) 2^n$ (C) $(2n+3) 2^{n-1}$ (D) 0 Sol. We have $3C_0 - 5C_1 + 7C_2 + \dots + (-1)^n (2n+3) C_n$ $= 3C_0 - 3C_1 + 3C_2 + \dots + (-1)^n 3C_n - 2C_1 + 4C_2$ $+ \dots + (-1)^n 2n C_n$

$$= 3(C_0 - C_1 + C_2 + \dots + (-1)^n C_n)$$

-2(C_1 - 2C_2 + \dots (-1)^n nC_n)
= 3 × 0 - 2 × 0 = 0. Ans. [D]

?

Ex.28 If the sum of the coefficients in the expansion of $(1+2x)^n$ is 6561, the greatest term in the expansion for x = 1/2 is - (A) 4th (B) 5th

- (C) 6th (D) None of these
- Sol. Sum of the coefficients in the expansion of $\Rightarrow (1+2x)^n = 6561$ $\Rightarrow (1+2x)^n = 6561 \text{ when } x = 1$ $\Rightarrow 3^n = 6561 \Rightarrow 3^n = 3^8 \Rightarrow n = 8$ Now, $\frac{T_{r+1}}{T_r} = \frac{{}^8C_r(2x)^r}{{}^8C_{r-1}(2x)^{r-1}} = \frac{9-r}{r} \cdot 2x$

$$\Rightarrow \frac{T_{r+1}}{T_r} = \frac{9-r}{r} \qquad [\because x = 1/2]$$
$$\therefore \frac{T_{r+1}}{T_r} > 1 \Rightarrow \frac{9-r}{r} > 1$$
$$\Rightarrow 9-r > r \Rightarrow 2r < 9 \Rightarrow r < 4\frac{1}{2}$$

Hence, 5th term is the greatest term.

Ans. [B]

Ex.29 If
$$(r + 1)^{\text{th}}$$
 term is $\frac{3.5...(2r-1)}{r!} \left(\frac{1}{5}\right)^r$, then this is the term of binomial expansion-

(A)
$$\left(1 - \frac{2}{5}\right)$$
 (B) $\left(1 - \frac{2}{5}\right)$
(C) $\left(1 + \frac{2}{5}\right)^{-1/2}$ (D) $\left(1 + \frac{2}{5}\right)^{1/2}$

Sol.

$$T_{r+1} = \frac{3.5...(2r-1)}{r!} \left(\frac{1}{5}\right)^{r}$$
$$= \frac{\left(\frac{1}{2}\right) \left(\frac{3}{2}\right) \left(\frac{5}{2}\right) ... \left(\frac{2r-1}{2}\right)}{r!} \left(\frac{2}{5}\right)^{r}$$