JEE MAIN + ADVANCED

MATHEMATICS

TOPIC NAME 3-D COORDINATE GEOMETRY

(PRACTICE SHEET)

3-D COORDINATE GEOMETRY **70**

- **Question based on Distance between two points**
- **Q.1** The points A(1, –1, 5), B(3, 1, 3) and $C(9, 1, -3)$ are the vertices of-(A) an equilateral triangle (B) an isosceles triangle (C) a right angled triangle (D) none of these
- **Q.2** Distance of the point (x, y, z) from y-axis is-

(A) y
\n(B)
$$
\sqrt{x^2 + y^2}
$$

\n(C) $\sqrt{y^2 + z^2}$
\n(D) $\sqrt{z^2 + x^2}$

- **Q.3** The distance of a point $P(x, y, z)$ from yz plane is-
	- (A) x (B) y (C) z $(D) x + y + z$
- **Q.4** The co-ordinates of the point which are lie equally distance from the point (0, 0, 0); $(a, 0, 0)$; $(0, b, 0)$ and $(0, 0, c)$ (A) $(a/2, b/2, c/2)$ (B) $(-a/2, b/2, c/2)$ (C) $(-a/2, -b/2, c/2)$ (D) $(a/2, -b/2, -c/2)$
- **Q.5** Distance of the point (a, b, c) from z- axis is -(A) $\sqrt{a^2 + b^2}$ (B) $\sqrt{b^2 + c^2}$
	- (C) $\sqrt{c^2 + a^2}$ (D) c
- **Q.6** The point on xy-plane which is equidistant from the points $(2, 0, 3)$, $(0, 3, 2)$, $(0, 0, 1)$ is- (A) $(2, 3, 0)$ (B) $(3, 0, 2)$ (C) (3, 2, 0) (D) (2, 3, 1)
- **Q.7** The point which lie on z -axis has the following condition-
	- (A) z coordinate are zero
	- (B) both x and y coordinate are zero
	- (C) both y and z coordinate are zero
	- (D) both x and z coordinate are zero
- **Q.8** The distance of the point (1, 2, 3) from x-axis is
	- (A) $\sqrt{13}$ (B) $\sqrt{5}$ (C) $\sqrt{10}$ (D) None of these

Q.9 If $P \equiv (0, 5, 6), Q \equiv (2, 1, 2), R \equiv (a, 3, 4)$ and $PQ = QR$ then 'a' equal to- $(A) 1$ (B) 2 (C) 3 (D) None of these

Q.10 Points $(1, 2, 3)$; $(3, 5, 7)$ and $(-1, -1, -1)$ are-(A) vertices of a equilateral triangle

> (B) vertices of a right angle triangle (C) vertices of a isosceles triangle (D) collinear

- **Q.11** If the vertices of points A, B, C of a tetrahedron ABCD are respectively (1, 2, 3) ; $(-1, 2, 3)$, $(1, -2, 3)$ and his centroid is $(0, 0, 1)$ 3/2) then co-ordinate of point D are- (A) $(1, 2, -3)$ (B) $(-1, -2, 3)$ (C) (-1, -2, -3) (D) (0, 0, 0)
- **Q.12** The distance of point (1, 2, 3) from coordinate axis are-
	- $(A) 1, 2, 3$ (B) $\sqrt{5}, \sqrt{10}, \sqrt{13}$ (C) $\sqrt{10}, \sqrt{13}, \sqrt{5}$ (D) $\sqrt{13}, \sqrt{10}, \sqrt{5}$
- **Q.13** The coordinates of the points A and B are $(-2, 2, 3)$ and $(13, -3, 13)$ respectively. A point P moves so that 3PA = 2 PB, then locus of P is- (A) $x^2 + y^2 + z^2 + 28x - 12y + 10z - 247 = 0$ (B) $x^2 + y^2 + z^2 + 28x - 12y + 10z + 247 = 0$
	- (C) $x^2 + y^2 + z^2 28x + 12y 10z 247 = 0$
	- (D) None of these

Q.14 A point which lie in yz plane, the sum of co-ordinate is 3, if distance of point from xz plane is twice the distance of point from xy plane, then co-ordinates are-

Q.15 A point located in space is moves in such a way that sum of distance from xy and yz plane is equal to distance from zx plane the locus of the point are-

> (A) $x - y + z = 2$ (B) $x + y - z = 0$ (C) $x + y - z = 2$ (D) $x - y + z = 0$

- **Q.16** A $(1, 3, 5)$ and B $(-2, 3, -4)$ are two points, A point P moves such that $PA^2 - PB^2 = 6c$, then locus of P is- (A) $x + 3z + 1 - c = 0$ (B) $x + 3z - 1 + c = 0$ (C) $2x + 3z + 1 - c = 0$ (D) $2x + 3z - 1 + c = 0$
- **Q.17** The locus of the point which moves such that its distance from $(1, -2, 2)$ is unity, is-(A) $x^2 + y^2 + z^2 - 2x + 4y + 4z + 8 = 0$ (B) $x^2 + y^2 + z^2 - 2x - 4y - 4z + 8 = 0$ (C) $x^2 + y^2 + z^2 + 2x + 4y + 4z + 8 = 0$ (D) $x^2 + y^2 + z^2 - 2x + 4y - 4z + 8 = 0$
- **Q.18** If distance of any point from z axis is thrice its distance from xy-plane, then its locus is- (A) $x^2 + y^2 - 9z^2 = 0$ (B) $y^2 + z^2 - 9x^2 = 0$ (C) $x^2 - 9y^2 + z^2 = 0$ (D) $x^2 + y^2 + z^2 = 0$
- **Q.19** The points $(1, 2, 3)$, $(-1, -2, -1)$, $(2, 3, 2)$ and (4, 7, 6) form a- (A) rectangle (B) square (C) parallelogram (D) rhombus
- **Q.20** If BC, CA and AB are the sides of a triangle ABC whose midpoints are (p, 0, 0), (0, q, 0), $(0, 0, r)$ then find 2 2 2 2. $(DC² \cdot (C⁴)²$ $p^- + q^- + r$ $(AB)^{2} + (BC)^{2} + (CA)$ $+$ a $\tilde{ }$ $+$ + (BC) ~ + - (A) 8 (B) 6 (C) 5 (D) 2

Question based on Coordinates of division point

Q.21 Find the ratio in which the segment joining the points $(2, 4, 5)$, $(3, 5, -4)$ is divided by the yz-plane. (A) $3:1$ (B) – $2:3$

 $(C) - 1 : 3$ (D) 1 : 2

- **Q.22** Find the ratio in which the segment joining $(1, 2, -1)$ and $(4, -5, 2)$ is divided by the plane $2x - 3y + z = 4$. $(A) 2 : 1$ (B) 3 : 2 $(C) 3 : 7$ (D) 1 : 2
- **Q.23** If points A (3, 2, –4); B(5,4, –6) and C(9, 8,–10) are collinear then B divides AC in the ratio- $(A) 2 : 1$ (B) 1 : 2
	- $(C) 2 : 3$ (D) 3 : 2
- **Q.24** If zx plane divides the line joining the points $(1, -1, 5)$ and $(2, 3, 4)$ in the ratio λ :1 then λ equals to- (A) 1/3 (B) 3 (C) –3 (D) –1/3
- **Q.25** OABC is a tetrahedron whose vertices are O (0, 0, 0); A (a, 2, 3); B (1, b, 2) and C (2, 1, c) if its centroid is $(1, 2, -1)$ then distance of point (a, b, c) from origin are-

Q.26 If $A(1, 2, -1)$ and $B(-1, 0, 1)$ are two points then co-ordinate of points which divide AB externally in the ratio of 1 : 2

(A) (3, 4, -3)
\n(B)
$$
\frac{1}{3}
$$
 (3, 4, -3)
\n(C) $\frac{1}{3}$ (1, 4, -1)
\n(D) None of these

- **Q.27** The ratio in which the yz-plane divides the join of the points $(-2, 4, 7)$ and $(3, -5, 8)$ is- $(A) 2 : 3$ (B) 3 : 2 $(C) -2 : 3$ (D) $4 : -3$
- **Q.28** A (3, 2, 0), B (5, 3, 2) and C (–9, 6, –3) are vertices of a triangle ABC. If the bisector of $\angle A$ meets BC at D, then its coordinates are-

(A)
$$
\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)
$$
 (B) $\left(-\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$
(C) $\left(\frac{19}{8}, \frac{57}{16}, -\frac{17}{16}\right)$ (D) $\left(-\frac{19}{8}, -\frac{57}{16}, \frac{17}{16}\right)$

- **Q.29** If origin is the centroid of the triangle ABC with vertices A(a, 1, 3), B(-2 , b, -5) and C(4, 7, c) then values of a, b, c are respectively- (A) 2, 8, 2 (B) 0, 2, 2 (C) –2, –8, 2 (D) None of these
- **Q.30** The line joining the points $(2, -3, 1)$ and $(3, -4, -5)$ and cuts the plane $2x + y + z = 7$ in those points, the point are-

(A)
$$
(1, 2, 7)
$$

\n(B) $(-1, 2, 7)$
\n(C) $(1, -2, 7)$
\n(D) $(1, -2, -7)$

Q.31 The vertices of a triangle ABC are A $(4, 3, -2)$, B $(3, 0, 1)$ and C $(2, -1, 3)$, the length of the median drawn from point 'A' -

(A)
$$
\frac{1}{2} \sqrt{122}
$$
 (B) $\sqrt{122}$
(C) $\frac{1}{3} \sqrt{122}$ (D) None of these

- **Q.32** The orthocentre of the triangle with vertices (2, 3, 4), (3, 4, 2) and (4, 2, 3) is- $(A) (1, 1, 1)$ (B) $(2, 2, 2)$ (C) $(3, 3, 3)$ (D) None of these
- **Q.33** The z-coordinates of a point R is 3, which is lie on a line meets the point $P(2, 7, 1)$ & $Q(3, 10, 11)$ then coordinates of R is- (A) $(2, 7, 3)$ (B) $(3, 10, 3)$ (C) (11/5, 38/5, 3) (D) (38/5, 11/5, 3)
- **Q.34** If three consecutive vertices of a parallelogram are A $(1, 2, 3)$, B $(-1, -2, -1)$ and $C(2, 3, 2)$. Its fourth vertex is- $(A) (-4, 5, 3)$ (B) $(4, 7, 6)$ (C) (3, - 5, 2) (D) (4, 5, 3)
- **Q.35** The points trisecting the line segment joining the points $(0, 0, 0)$ and $(6, 9, 12)$ are-(A) (2, 3, 4), (4, 6, 8) (B) (3, 4, 2), (6, 8, 4) (C) (2, 3, 4), (4, 8, 6) (D) none of these
- **Q.36** The point which divides the line joining the points $(2, 4, 5)$ and $(3, 5, -4)$ in the ratio -2 : 3 lies on- (A) XOY plane (B) YOZ plane (C) ZOX plane (D) none of these
- **Q.37** The line joining the points (0,0,0) and $(1,-2,-5)$ is divided by plane $x - y + z = 1$ in the ratio- $(A) 1 : 1$ (B) 1 : 2 (C) $1:3$ (external) (D) $3:1$ (external)

Question based on Direction cosines and direction Ratio's of a line

Q.38 Find the d.c's of a line whose direction ratios are 2, 3, –6

(A)
$$
\frac{2}{7}, \frac{2}{5}, \frac{2}{7}
$$
 (B) $\frac{2}{7}, \frac{3}{7}, -\frac{6}{7}$
(C) $\frac{2}{7}, \frac{3}{4}, -\frac{2}{7}$ (D) $\frac{3}{7}, \frac{4}{7}, \frac{6}{7}$

Q.39 The projections of a line segment on x, y and z axes are respectively 3, 4 and 5. Find the length and direction cosines of the line segment-

(A)
$$
5\sqrt{3}
$$
; $\frac{3}{5\sqrt{3}}$, $\frac{4}{5\sqrt{3}}$, $\frac{1}{\sqrt{3}}$
\n(B) $5\sqrt{2}$; $\frac{5}{5\sqrt{2}}$, $\frac{3}{5\sqrt{2}}$, $\frac{1}{\sqrt{2}}$
\n(C) $5\sqrt{2}$; $\frac{3}{5\sqrt{2}}$, $\frac{4}{5\sqrt{2}}$, $\frac{1}{\sqrt{2}}$
\n(D) $3\sqrt{2}$; $\frac{3}{3\sqrt{2}}$, $\frac{4}{3\sqrt{2}}$, $\frac{1}{\sqrt{2}}$

Q.40 The direction cosines of a line equally inclined with the coordinate axes are-

(A) (1, 1, 1) or (-1, -1, -1)
\n(B)
$$
\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)
$$
 or $\left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$
\n(C) $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ or $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$

(D) none of these

Q.41 If the projection of a line on the co-ordinate axes are $6, -3, 2$, then direction cosines of the line are-

(A) 6, -3, 2
\n(B)
$$
\frac{6}{7}, \frac{-3}{7}, \frac{2}{7}
$$

\n(C) $\frac{7}{6}, \frac{-7}{3}, \frac{7}{2}$
\n(D) none of these

- **Q.42** If a line makes angle α , β , γ with the co-ordinate axis then $\cos 2 \alpha + \cos 2 \beta + \cos 2\gamma$ equals to- $(A) -2$ (B) –1 (C) 1 (D) 2
- **Q.43** If a line makes angle α , β , γ with the co-ordinate axis and cos $\alpha = 14/15$] cos β =1/3 then cos γ is equal to ? (A) $1/5$ (B) \pm 1/ 5 $(C) \pm 2/15$ (D) None of these
- **Q.44** If a line makes angle 120º and 60º with x and y axis then angle makes with the z axis are- (A) 60° or 120° (B) 45° or 135° (C) 30° or 150° (D) 30° or 60°

Q.45 If α , β , γ be the angles which a line makes with the positive directions of the axes, then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$ $(A) 2$ (B) 3 (C) 4 (D) None of these

Q.46 If the direction ratios of a line are $1, -3, 2,$ then the direction cosines of the line are-

(A)
$$
\frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{2}{\sqrt{14}}
$$

\n(B) $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
\n(C) $-\frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{-2}{\sqrt{14}}$
\n(D) $-\frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}$

- **Q.47** The direction cosine of a line which are perpendicular to the yz plane- $(A) 1, 0, 0$ (B) 0, 1, 0 $(C) 0, 0, 1$ (D) 1, 1, 1
- **Q.48** The co-ordinates of a point P are (3, 12, 4) with respect to the origin O, then the direction cosines of OP are-

(A) 3, 12, 4
 (B)
$$
\frac{1}{4}
$$
, $\frac{1}{3}$, $\frac{1}{2}$
 (C) $\frac{3}{\sqrt{13}}$, $\frac{1}{\sqrt{13}}$, $\frac{2}{\sqrt{13}}$ (D) $\frac{3}{13}$, $\frac{12}{13}$, $\frac{4}{13}$

- **Q.49** A line makes angle α , β , γ with the coordinate axis if $\alpha + \beta = 90^\circ$ then γ equal to- $(A) 0^{\circ}$ (B) 90° (C) 180º (D) None of these
- **Q.50** The length of line segment AB is 14 if its direction ratio are 2, 3, 6 then its direction cosines will be-

 $(A) \pm 2/7 \pm 3/7, \pm 6/7$ $(B) \pm 2/14$, $\pm 3/14$, $\pm 6/14$ $(C) \pm 2/7 \mp 3/7, \pm 6/7$ (D) None of these

Q.51 Which of the following triplets gives direction cosines of a line?

(A) 1, 1, 1
\n(B) 1, 1, -1
\n(C) 1, -1, 1
\n(D)
$$
\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}
$$

Question based on Angle between two lines

- **Q.52** If the line through the points (4, 1, 2) and $(5, \lambda, 0)$ is parallel to the line through the points $(2, 1, 1)$ and $(3, 3, -1)$, find λ . (A) 3 (B) –3 $(C) 2$ (D) 4
- **Q.53** If the line joining the points (1, 2, 3) and (4, 5, 7) is perpendicular to the line joining the points $(-4, 3, -6)$ and $(2, 9, \lambda)$. $(A) -15$ (B) 20 $(C) 5/3$ (D) 10
- **Q.54** If the coordinates of the vertices of a triangle ABC be $A(-1, 3, 2)$, $B(2, 3, 5)$ and $C(3, 5, -2)$, then $\angle A$ is equal to-(A) 45° (B) 60° (C) 90° (D) 30°
- **Q.55** If co-ordinates of points P, Q, R, S are respectively $(1, 2, 3)$, $(4, 5, 7)$; $(-4, 3, -6)$ and (2, 0, 2) then- (A) PQ \parallel RS (B) PQ \perp RS (C) $PO = RS$ (D) None of these
- **Q.56** A line located in a space makes equal angle with the co-ordinate axis then the angle made by this line with any axis is-
	- $(A) 60^{\circ}$ (B) 45[°]
	- (C) \cos^{-1} 1/3 (D) $\cos^{-1} 1/\sqrt{3}$
- **Q.57** The angle between the pair of lines with direction ratios 1, 2, 2 and 2 , 3, 6 is-

Q.58 If O is origin and $P(1, -2, 1)$ and $Q(2, 3, 4)$ are other two points then-

(A) $OP = OQ$ (B) $OP \perp OQ$

 $(C) OP \parallel OQ$ (D) None of these

- **Q.59** The point in which the join of $(-9, 4, 5)$ and $(11, 0, -1)$ is met by the perpendicular from the origin is- $(A) (2, 1, 2)$ (B) $(2, 2, 1)$ (C) $(1, 2, 2)$ (D) None of these
- **Q.60** If vertices of a $\triangle ABC$ are respectively (a, 0, 0); $(0, b, 0)$ and $(0, 0, c)$ then \angle B is equal to-

(A)
$$
\cos^{-1} \frac{b^2}{\sqrt{(a^2 + b^2)(b^2 + c^2)}}
$$

\n(B) $\cos^{-1} \frac{b^2}{\sqrt{(b^2 + c^2)(c^2 + a^2)}}$
\n(C) $\cos^{-1} \frac{b^2}{\sqrt{(a^2 + b^2)(c^2 + a^2)}}$
\n(D) None of these

- **Q.61** The co-ordinates of points A, B, C, D are respectively $(4, 1, 2)$; $(5, a, 0)$; $(2, 1, 1)$ and $(3, 3, -1)$, if AB is perpendicular to CD then 'a' equal to- (A) $1/2$ (B) $-1/2$ (C) $3/2$ (D) $-3/2$
- **Q.62** If points $(2, 0, -1)$; $(3, 2, -2)$ and $(5, 6, \lambda)$ are collinear then λ equal to- (A) 4 (B) –4 $(C) 3$ (D) 0
- **Q.63** The angle between the lines whose direction ratios are 3, 4, 5 and 4, –3, 5 is- (A) 30° (B) 45° (C) 60° (D) 90°
- **Q.64** If the vertices of a right angle isosceles triangles are A $(a, 7, 10)$; B $(-1, 6, 6)$ and $C(-4, 9, 6)$ which are right angle on B, then 'a' equal to- $(A) -1$ (B) 0 (C) 2 (D) – 3
- **Q.65** If $\lt a$, b, c $>$ and $\lt a'$, b', c' $>$ are the direction ratios of two perpendicular lines, then- (A) $a/a' = b/b' = c/c'$ (B) $aa' + bb' + cc' = 0$ (C) aa' + bb' + cc' = 1 (D) None of these

Q.66 If direction ratio of two lines are a_1 , b_1 , c_1 and a_2 , b_2 , c_2 then these lines are parallel if and only if- (A) $a_1 = a_2, b_1 = b_2, c_1 = c_2$ (B) $a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$ (C) 2 1 a $\frac{a_1}{a_2}$ = 2 1 b $\frac{b_1}{b_2}$ = 2 1 c c (D) None of these

- **Q.67** If $A = (k, 1, -1); B = (2k, 0, 2) \& C = (2 + 2k, k,$ 1) if $AB \perp BC$, then value of k are- $(A) 0$ (B) 1 (C) 2 (D) 3
- **Q.68** A point P(x, y, z) moves parallel to z-axis. Which of the three variables x, y, z remain fixed? (A) x and y (B) y and z
	- (C) x and z (D) none of these
- **Q.69** A point P(x, y, z), moves parallel to yz-plane. Which of the three variables x, y, z remain fixed?

(A) x (B) y (C) z (D) y and z

Question based on Projection problems

- **Q.70** If P(6, 3, 2); Q(5,1,4); R(3, -4, 7) and S(0, 2, 5) are given points then the projection of PQ on RS is equal to- (A) 13/7 (B) 13 (C) $\sqrt{13}$ (1) $13/\sqrt{7}$
- **Q.71** $P = (x_1, y_1, z_1)$ and $Q = (x_2, y_2, z_2)$ are two points if direction cosines of a line AB are ℓ , m, n then projection of PQ on AB are-

(A)
$$
\frac{1}{\ell} (x_2 - x_1) + \frac{1}{m} (y_2 - y_1) + \frac{1}{n} (z_2 - z_1)
$$

\n(B) $\ell (x_2 - x_1) + m(y_2 - y_1) + n(z_2 - z_1)$
\n(C) $\frac{1}{\ell mn} [\ell (x_2 - x_1) + m(y_2 - y_1) + n(z_2 - z_1)]$

(D) None of these

Q.72 A line makes angle 45º, 60 and 60º with the coordinate axis, the projection of line segments on line which joins point $(-1, 2, 3)$ & $(-1, 4, 0)$ are-

- **Q.73** The projection of point (a, b, c) in yz plane are- $(A) (0, b, c)$ (B) $(a, 0, c)$ (C) (a, b, 0) (D) (a, 0, 0)
- **Q.74** The direction cosine of a line are proportional to 1, 2, 3, the projection of line segment on line which joins point $(5, 2, 3)$ and $(-1, 0, 2)$ - $(A) 13$ $(B) 13/14$ (C) $13/\sqrt{14}$ (D) None of these
- **Q.75** If the angle between the line AB and CD is θ then projection of line segment AB on CD are
	- (A) AB sin θ (B) AB cos θ (C) AB tan θ (D) AB cot θ
- **Q.76** The projections of a line segment on x, y, z axes are 12, 4, 3. The length and the direction cosines of the line segments are- (A) 13, < 12/13, 4/13, 3/13 > (B) 19, < 12/19, 4/19, 3/19 > (C) $11, < 12/11, 14/11, 3/11 >$ (D) None of these

Question based on Equation of a line and angle between them

- **Q.77** If $\frac{1}{\ell}$ $\frac{x-1}{\ell} = \frac{y-1}{m}$ $\frac{y-2}{m} = \frac{z+1}{n}$ $\frac{z+1}{z}$ is the equation of the line through $(1, 2, -1) \& (-1, 0, 1)$, then (ℓ, m, n) is- (A) (-1, 0, 1) (B) (1, 1, -1) (C) $(1, 2, -1)$ (D) $(0, 1, 0)$
- **Q.78** If the angle between the lines whose direction ratios are $2, -1, 2$ and a, 3, 5 be 45 $^{\circ}$, then a = $(A) 1$ (B) 2 (C) 3 (D) 4

Q.79 Direction ratios of the line represented by the equation $x = ay + b$, $z = cy + d$ are-

Q.80 The equation of a line passing through the point $(-3, 2, -4)$ and equally inclined to the axes, are-

(A)
$$
x - 3 = y + 2 = z - 4
$$

\n(B) $x + 3 = y - 2 = z + 4$
\n(C) $\frac{x + 3}{1} = \frac{y - 2}{2} = \frac{z + 4}{3}$
\n(D) none of these

Q.81 The equation of the line passing through the points (3, 2, 4) and (4, 5, 2) is-

(A)
$$
\frac{x+3}{1} = \frac{y+2}{3} = \frac{z+4}{-2}
$$

\n(B)
$$
\frac{x-3}{1} = \frac{y-2}{3} = \frac{z-4}{-2}
$$

\n(C)
$$
\frac{x+3}{7} = \frac{y+2}{7} = \frac{z+4}{6}
$$

\n(D)
$$
\frac{x-3}{7} = \frac{y-2}{7} = \frac{z-4}{6}
$$

Q.82 If the lines
$$
\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}
$$
 and $\frac{x-1}{3k} = \frac{y-5}{1} = \frac{z-6}{-5}$ are at right angles, then the value of k will be-

(A)
$$
-\frac{10}{7}
$$
 (B) $-\frac{7}{10}$ (C) -10 (D) -7

- **Q.83** Angle between two lines 1 $z - 4$ 2 $y + 3$ 2 $x + 1$ $\overline{}$ $\frac{+1}{2} = \frac{y+3}{2} = \frac{z-4}{4}$ and 2 $z + 1$ 2 y 4 1 $\frac{x-4}{2} = \frac{y+4}{3} = \frac{z+4}{4}$ $\frac{1}{1}$ = $\frac{y+4}{2}$ = $\frac{z+1}{2}$ is- (A) cos⁻¹ I J $\left(\frac{1}{-}\right)$ l ſ 9 $\left(\frac{1}{2}\right)$ (B) cos⁻¹ $\left(\frac{2}{2}\right)$ J $\left(\frac{2}{5}\right)$ J ſ 9 2 (C) \cos^{-1} I J $\left(\frac{3}{5}\right)$ l ſ 9 $\frac{3}{2}$ (D) cos⁻¹ I J $\left(\frac{4}{5}\right)$ l ſ 9 4
- **Q.84** A line passing through the point $(-5, 1, 3)$ and (1, 2, 0) is perpendicular to the line passing through the point (x, 2, 1) and $(0, -4, 6)$ then x equal to-(A) $7/2$ (B) $-7/2$ (C) 1 (D) -1
- **Q.85** The angle between the lines whose direction ratios are $1, -2, 7$ and $3, -2, -1$ is -(A) 0° (B) 30° (C) 45° (D) 90°
- **Q.86** Equation of x-axis is-

(A)
$$
\frac{x}{1} = \frac{y}{1} = \frac{z}{1}
$$
 (B) $\frac{x}{0} = \frac{y}{1} = \frac{z}{1}$
(C) $\frac{x}{1} = \frac{y}{0} = \frac{z}{0}$ (D) $\frac{x}{0} = \frac{y}{0} = \frac{z}{1}$

Question based on Perpendicular distance of a point from a line, foot of the perpendicular

Q.87 The co-ordinates of the foot of the perpendicular drawn from the point A (1, 0, 3) to the join of the point B $(4, 7, 1)$ and C $(3, 1)$ 5, 3) are-

(A)
$$
\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)
$$
 (B) (5, 7, 17)
(C) $\left(\frac{5}{3}, -\frac{7}{3}, \frac{17}{3}\right)$ (D) $\left(-\frac{5}{3}, \frac{7}{3}, -\frac{17}{3}\right)$

l

Q.88 The length of the perpendicular from point $(1, 2, 3)$ to the line $\frac{4}{3}$ $\frac{x-6}{3} = \frac{y-2}{2}$ $\frac{y-7}{2} = \frac{z-7}{-2}$ $\frac{z-7}{\cdot}$ is- $(A) 5$ (B) 6 $(C) 7$ (D) 8

Q.89 The perpendicular distance of the point $(2, 4, -1)$ from the line $\frac{\lambda}{7}$ $\frac{x+5}{7} = \frac{y+5}{4}$ $\frac{y+3}{1}$ = 9 $z - 6$ $\frac{-6}{5}$ is- $(A) 3$ (B) 5 (C) 7 (D) none of these

Question based on Distance between two lines and Intersection point

Q.90 The point of intersection of lines 5 $\frac{x-4}{5} = \frac{y-2}{2}$ $\frac{y-1}{2} = \frac{z}{1}$ $\frac{z}{1}$ and $\frac{x}{2}$ $\frac{x-1}{2} = \frac{y-3}{3}$ $\frac{y-2}{3} = \frac{z-4}{4}$ $z - 3$ is - (A) (-1, -1, -1) (B) (-1, -1, 1) $(C) (1, -1, -1)$ (D) $(-1, 1, -1)$

Q.91 The shortest distance between the lines

$$
\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1} \text{ and } \frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}
$$

is
(A) $\sqrt{30}$ (B) $2\sqrt{30}$

(C)
$$
5\sqrt{30}
$$
 (D) $3\sqrt{30}$

Q.92 The straight lines
$$
\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}
$$
 and
 $x-1$ $y-2$ $z-3$

$$
\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{-2}
$$
 are-

- (A) parallel lines
- (B) intersecting at 60º
- (C) skew lines
- (D) intersecting at right angle

Question bifferent forms of the plane

- **Q.93** The equation of the plane through the three points $(1, 1, 1), (1, -1, 1)$ and $(-7, -3, -5)$, is-(A) $3x - 4z + 1 = 0$ (B) $3x - 4y + 1 = 0$ (C) $3x + 4y + 1 = 0$ (D) None of these
- **Q.94** The co-ordinates of the foot of the perpendicular drawn from the origin to a plane is $(2, 4, -3)$. The equation of the plane is-
	- (A) $2x 4y 3z = 29$ (B) $2x - 4y + 3z = 29$
	- (C) $2x + 4y 3z = 29$
	- (D) none of these
- **Q.95** The equation of a plane which passes through $(2, -3, 1)$ and is normal to the line joining the points $(3, 4, -1)$ and $(2, -1, 5)$ is given by- $(A) x + 5y - 6z + 19 = 0$ (B) $x - 5y + 6z - 19 = 0$ (C) x + 5y + 6z + 19 = 0 (D) $x - 5y - 6z - 19 = 0$
- **Q.96** If O is the origin and A is the point (a, b, c) then the equation of the plane through A and at right angles to OA is- (A) $a(x - a) - b(y - b) - c(z - c) = 0$ (B) $a(x + a) + b(y + b) + c(z + c) = 0$ (C) $a(x-a)+b(y-b)+c(z-c)=0$ (D) none of these
- **Q.97** If from a point P(a, b, c) perpendicular PA and PB are drawn to yz and zx planes, then the equation of the plane OAB is- (A) $bcx + cay + abz = 0$ (B) $bcx + cay - abz = 0$ (C) bcx – cay + abz = 0 (D) –bcx + cay + abz = 0
- **Q.98** The equation of a plane which cuts equal intercepts of unit length on the axes, is- (A) $x + y + z = 0$ (B) $x + y + z = 1$

(C)
$$
x + y - z = 1
$$
 (D) $\frac{x}{a} + \frac{y}{a} + \frac{z}{a} = 1$

Q.99 The plane $ax + by + cz = 1$ meets the co-ordinate axes in A, B and C. The centroid of the triangle is-

(A) (3a, 3b, 3c)
\n(B)
$$
\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)
$$

\n(C) $\left(\frac{3}{a}, \frac{3}{b}, \frac{3}{c}\right)$
\n(D) $\left(\frac{1}{3a}, \frac{1}{3b}, \frac{1}{3c}\right)$

- **Q.100** The equation of yz-plane is- (A) $x = 0$ (B) $y = 0$ (C) $z = 0$ (D) $x + y + z = 0$
- **Q.101** If the length of perpendicular drawn from origin on a plane is 7 units and its direction ratios are -3 , 2, 6, then that plane is- $(A) -3x + 2y + 6z - 7 = 0$ $(B) -3x + 2y + 6z - 49 = 0$ (C) $3x - 2y + 6z + 7 = 0$ $(D) -3x + 2y - 6z - 49 = 0$
- **Q.102** A plane meets the coordinate axes at A, B and C such that the centroid of the triangle is (3, 3, 3) . The equation of the plane is- (A) $x + y + z = 3$ (B) $x + y + z = 9$ (C) $3x + 3y + 3z = 1$ (D) $9x + 9y + 9z = 1$

Q.103 The direction cosines of any normal to the xz-plane is-

Question based on Angle between two planes

- **Q.104** Find the angle between the planes $2x - y + z = 6$ and $x + y + 2z = 3$ is-(A) $\pi/3$ (B) $\pi/6$ (C) $\pi/2$ (D) 0
- **Q.105** The equation of the plane which is parallel to y-axis and cuts off intercepts of length 2 and 3 from x-axis and z-axis is- (A) $3x + 2z = 1$ (B) $3x + 2z = 6$

(C)
$$
2x + 3z = 6
$$
 (D) $3x + 2z = 0$
(C) $2x + 3z = 6$ (D) $3x + 2z = 0$

- **Q.106** The value of k for which the planes $3x 6y 2z = 7$ and $2x + y - kz = 5$ are perpendicular to each other, is- $(A) 0$ (B) 1 (C) 2 (D) 3
- **Q.107** The equation of the plane passing through the point $(-1, 3, 2)$ and perpendicular to each of the planes $x + 2y + 3z = 5$ and $3x + 3y + z = 0$, is- (A) $7x - 8y + 3z - 25 = 0$

(B) $7x - 8y + 3z + 25 = 0$ $(C) -7x + 8y - 3z + 5 = 0$

- (D) $7x 8y 3z + 5 = 0$
- **Q.108** The equation of the plane through (1, 2, 3) and parallel to the plane $2x + 3y - 4z = 0$ is-(A) $2x + 3y + 4z = 4$ (B) $2x + 3y + 4z + 4 = 0$ (C) $2x - 3y + 4z + 4 = 0$ (D) $2x + 3y - 4z + 4 = 0$
- **Q.109** The equation of the plane passing through $(1, 1, 1)$ and $(1, -1, -1)$ and perpendicular to $2x - y + z + 5 = 0$ is-(A) $2x + 5y + z - 8 = 0$ (B) $x + y - z - 1 = 0$ (C) $2x + 5y + z + 4 = 0$ (D) $x - y + z - 1 = 0$

Question based on Intersection of two planes

- **Q.110** The equation of the plane through intersection of planes $x + 2y + 3z = 4$ and $2x + y - z = -5$ & perpendicular to the plane $5x + 3y + 6z + 8 = 0$ is- (A) $7x - 2y + 3z + 81 = 0$ (B) $23x + 14y - 9z + 48 = 0$ (C) $51x + 15y - 50z + 173 = 0$
	- (D) None of these
- **Q.111** The equation of the plane containing the line of intersection of the planes $2x - y = 0$ and $y - 3z = 0$ and perpendicular to the plane $4x + 5y - 3z - 8 = 0$ is-(A) $28x - 17y + 9z = 0$ (B) $28x + 17y + 9z = 0$ (C) $28x - 17y - 9z = 0$ (D) $7x - 3y + z = 0$
- **Q.112** The equation of the plane passing through the line of intersection of the planes $x + y + z = 1$ and $2x + 3y - z + 4 = 0$ and parallel to x-axis is-(A) $y - 3z - 6 = 0$ (B) $y - 3z + 6 = 0$ (C) $y - z - 1 = 0$ (D) $y - z + 1 = 0$
- **Q.113** The equation of the plane passing through the intersection of the planes $x + y + z = 6$ and $2x + 3y + 4z + 5 = 0$ and the point $(1, 1, 1)$, is-(A) $20x + 23y + 26z - 69 = 0$ (B) $20x + 23y + 26z + 69 = 0$ (C) $23x + 20y + 26z - 69 = 0$ (D) none of these

Question based on Length & foot of perpendicular & image of the point w.r.t.plane

- **Q.114** Distance of the point (2, 3, 4) from the plane $3x - 6y + 2z + 11 = 0$ is-(A) 1 (B) 2 (C) 3 (D) 0
- **Q.115** The distance between the planes $x + 2y + 3z + 7 = 0$ and $2x + 4y + 6z + 7 = 0$ is $\sqrt{ }$ 7

(A)
$$
\frac{\sqrt{7}}{2\sqrt{2}}
$$
 (B) $\frac{7}{2}$ (C) $\frac{\sqrt{7}}{2}$ (D) $\frac{7}{2\sqrt{2}}$

- **Q.116** If the product of distances of the point (1, 1, 1) from the origin and the plane $x - y + z + k = 0$ be 5, then $k =$ $(A) -2$ (B) –3 (C) 4 (D) 7
- **Q.117** The equation of the plane which is parallel to the plane $x - 2y + 2z = 5$ and whose distance from the point $(1, 2, 3)$ is 1, is-(A) $x - 2y + 2z = 3$ (B) $x - 2y + 2z + 3 = 0$ (C) $x - 2y + 2z = 6$ (D) $x - 2y + 2z + 6 = 0$
- **Q.118** The length and foot of the perpendicular from the point (7, 14, 5) to the plane $2x + 4y - z = 2$, are-
	- (A) $\sqrt{21}$, (1, 2, 8) (B) $3\sqrt{21}$, (3, 2, 8) (C) 21 $\sqrt{3}$, $(1, 2, 8)$ (D) 3 $\sqrt{21}$, $(1, 2, 8)$
- **Q.119** Image point of (1, 3, 4) in the plane $2x - y + z + 3 = 0$ is - (A) (-3, 5, 2) (B) (3, 5, -2) (C) $(3, -5, 3)$ (D) none of these
- **Q.120** If p_1 , p_2 , p_3 denote the distances of the plane $2x - 3y + 4z + 2 = 0$ from the planes $2x - 3y + 4z + 6 = 0$, $4x - 6y + 8z + 3 = 0$ and $2x - 3y + 4z - 6 = 0$ respectively then -(A) $p_1 + 8p_2 - p_3 = 0$ (B) $p_3^2 = 16p_2$ (C) $8p_2^2 = p_1^2$
	- (D) $p_1 + 2p_2 + 3p_3 = \sqrt{29}$

Question Line and Plane

Q.121 Equations of the line through (1, 2, 3) and parallel to the plane $2x + 3y + z + 5 = 0$ are

(A)
$$
\frac{x-1}{-1} = \frac{y-2}{1} = \frac{z-3}{-1}
$$

\n(B)
$$
\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{1}
$$

\n(C)
$$
\frac{x-1}{3} = \frac{y-2}{2} = \frac{z-3}{1}
$$

\n(D)
$$
\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{1}
$$

- **Q.122** The co-ordinates of the point where the line joining the points $(2, -3, 1)$, $(3, -4, -5)$ cuts the plane $2x + y + z = 7$ are- $(A) (2, 1, 0)$ (B) $(3, 2, 5)$ (C) $(1, -2, 7)$ (D) None of these
- **Q.123** Equations of the line through (1, 1, 1) and perpendicular to the plane $2x + 3y - z - 5 = 0$ are-
	- (A) 2 $\frac{x-1}{2} = \frac{y-3}{3}$ $\frac{y-1}{3} = \frac{z-1}{1}$ $z - 1$ (B) 2 $\frac{x-1}{2} = \frac{y-3}{3}$ $\frac{y-1}{3} = \frac{z-1}{-1}$ $z - 1$ (C) $\frac{4}{2}$ $\frac{x-1}{2} = \frac{y-1}{-1}$ $\frac{y-1}{z}$ = 1 $z - 1$ (D) None of these
- **Q.124** The angle between the line $\frac{\lambda}{3}$ $\frac{x+1}{3} = \frac{y-1}{4}$ $\frac{y-1}{4} = \frac{z-2}{2}$ $z - 2$ and the plane $2x - 3y + z + 4 = 0$ is- (A) cos⁻¹ J \backslash $\overline{}$ l $\left(\begin{array}{c} \end{array} \right)$ 406 $\stackrel{4}{=}$ (B) tan⁻¹ J) $\overline{}$ l ſ 406 4 (C) sin⁻¹ J \backslash $\overline{}$ l $\left(\begin{array}{c} \end{array} \right)$ 406 $\left(\begin{array}{c} 4 \\ \end{array}\right)$ (D) None of these
- **Q.125** The point of intersection of the line 1 $\frac{x}{1} = \frac{y - z}{2}$ $\frac{y-1}{2} = \frac{z+3}{3}$ $\frac{z+2}{z}$ & the plane 2x + 3y + z = 0 is- (A) $(0, 1, -2)$ (B) $(1, 2, 3)$ (C) (-1, 9, -25) (D) I J $\left(\frac{-1}{\cdots}, \frac{9}{\cdots}, \frac{-25}{\cdots}\right)$ l $\begin{pmatrix} -1 & 9 \end{pmatrix}$ 11 25 11 $\frac{-1}{11}, \frac{9}{11}$ 1
- **Q.126** The equation of the plane passing through the origin and perpendicular to the line $x = 2y = 3z$ is- (A) $6x + 3y + 2z = 0$ (B) $x + 2y + 3z = 0$ (C) $3x + 2y + z = 0$ (D) none of these
- **Q.127** If the equation of a line and a plane be
	- 2 $\frac{x+3}{2} = \frac{y-3}{3}$ $\frac{y-4}{3} = \frac{z+2}{2}$ $\frac{z+5}{2}$ and $4x - 2y - z = 1$

respectively, then-

- (A) line is parallel to the plane
- (B) line is perpendicular to the plane
- (C) line lies in the plane
- (D) none of these

- 1 $\frac{x-4}{1} = \frac{y-1}{1}$ $\frac{y-3}{1} = \frac{z-3}{2}$ $\frac{z-2}{z}$ & 1 $\frac{x-3}{1} = \frac{y-2}{-4}$ $y - 2$ _ $\frac{-2}{-4} = \frac{2}{5}$ $\frac{z}{z}$ is-(A) $11x - y - 3x = 35$ (B) $11x + y - 3z = 35$ (C) $11x - y + 3z = 35$ (D) none of these
- **Q.129** The equation of the plane passing through the points $(3, 2, 2)$ and $(1, 0, -1)$ and parallel to $y - 1$
	- the line $\frac{\lambda}{2}$ $\frac{x-1}{2} = \frac{y-1}{2}$ $\frac{-1}{2} = \frac{2}{3}$ $\frac{z-2}{z}$, is-(A) $4x - y - 2z + 6 = 0$ (B) $4x - y + 2z + 6 = 0$ (C) $4x - y - 2z - 6 = 0$ (D) none of these

Q.130 The point where the line $\frac{\lambda}{2}$ $\frac{x-1}{2} = \frac{y-2}{-3}$ $\frac{y-2}{-3} = \frac{z+2}{4}$ $z + 3$ meets the plane $2x + 4y - z = 1$, is- (A) $(3, -1, 1)$ (B) $(3, 1, 1)$ (C) (1, 1, 3) (D) (1, 3, 1)

- **Q.131** The line drawn from $(4, -1, 2)$ to the point (–3, 2, 3) meets a plane at right angles at the point $(-10, 5, 4)$, then the equation of plane is-
	- (A) $7x 3y z + 89 = 0$ (B) $7x + 3y + z + 89 = 0$ (C) $7x - 3y + z + 89 = 0$ (D) none of these

Q.132 The line $\frac{4}{3}$ $\frac{x-2}{3} = \frac{y-2}{4}$ $\frac{y-3}{4} = \frac{z-5}{5}$ $\frac{z-4}{z}$ is parallel to the plane- (A) $2x + 3y + 4z = 29$ (B) $3x + 4y - 5z = 10$ (C) $3x + 4y + 5z = 38$ (D) $x + y + z = 0$

- **Q.133** The distance between the line
	- 3 $\frac{x-1}{3} = \frac{y+2}{-2}$ $y+2$ $\frac{+2}{-2} = \frac{z-2}{2}$ $\frac{z-1}{z}$ & the plane $2x + 2y - z = 6$ is- $(A) 9$ (B) 1 $(C) 2$ (D) 3
- **Q.134** The angle between the line

$$
\frac{x-2}{a} = \frac{y-2}{b} = \frac{z-2}{c}
$$
 and the plane
ax + by + cz + 6 = 0 is-
(A) sin⁻¹ $\left(\frac{1}{\sqrt{a^2 + b^2 + c^2}} \right)$
(B) 45°
(C) 60°
(D) 90°

Q.135 The angle between the line

2 $\frac{x-1}{2} = \frac{y-1}{1}$ $\frac{y-2}{1} = \frac{z+3}{-2}$ $\frac{z+3}{z}$ and the plane $x + y + 4 = 0$, is- $(A) 0^{\circ}$ (B) 30[°] $(C) 45^{\circ}$ (D) 90°

Q.136 The equation of the plane containing the line

3 $x + 1$ $\frac{+1}{3} = \frac{y-2}{2}$ $\frac{y-3}{2} = \frac{z+1}{1}$ $\frac{z+2}{z}$ and the point $(0, 7, -7)$ is- (A) $x + y + z = 1$ (B) $x + y + z = 2$ (C) $x + y + z = 0$ (D) none of these

- **Q.1** The cosines of the angle between any two diagonals of a cube is-
	- (A) $1/3$ (B) $1/2$
	- (C) 2/3 (D) $1/\sqrt{3}$
- **Q.2** A point moves in such a way that sum of square of its distances from the co-ordinate axis are 36, then distance of these given point from origin are-
	- (A) 6 (B) $2\sqrt{3}$ (C) 3 $\sqrt{2}$ (D) None of these
- **Q.3** If co-ordinates of points A and B are (3, 4, 5) and $(-1, 3, -7)$ respectively, then the locus of P such that $PA^2 - PB^2 + 2k^2 = 0$ is-(A) $8x + 2y + 24z = 2k^2 - 9$ (B) $8x + 2y + 24z = 2k^2$ (C) $8x + 2y - 24z = 2k^2$ (D) $8x + 2y - 24z + 9 = 2k^2$
- **Q.4** If A(3, 2, -5), B(-3, 8, -5) and C(-3, 2, 1) are vertices of a triangle, then its circumcentre is- (A) $(1, 4, 3)$ (B) $(-1, 4, -3)$ (C) $(1, -4, 3)$ (D) none of these
- **Q.5** A line passes through the points $(6, -7, -1)$ and $(2, -3, 1)$. The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are -

(A)
$$
\frac{2}{3}
$$
, $\frac{-2}{3}$, $\frac{-1}{3}$ (B) $\frac{2}{3}$, $\frac{-2}{3}$, $\frac{1}{3}$
(C) $\frac{2}{3}$, $\frac{2}{3}$, $\frac{1}{3}$ (D) $-\frac{2}{3}$, $\frac{2}{3}$, $\frac{1}{3}$

- **Q.6** The graph of the equation $x^2 + y^2 = 0$ in three dimensional space is-
	- (A) x-axis (B) y-axis
	- (C) z-axis (D) xy-plane
- **Q.7** Three lines with direction ratios 1, 1, 2; $3-1, -\sqrt{3} - 1, 4; -\sqrt{3} - 1, \sqrt{3} - 1, 4,$ enclose- (A) an equilateral triangle (B) an isosceles triangle (C) a right angled triangle
	- (D) a right angled isosceles triangle

Q.8 The distance of the point $(-1,-5,-10)$ from the point of intersection of line 3 $\frac{x-2}{3} = \frac{y+2}{4}$ $\frac{y+1}{4} = \frac{z-1}{12}$ $\frac{z-2}{z}$ and plane $x - y + z = 5$ is- (A) 13 (B) 10 (C) 8 (D) 21

Q.9 If the direction cosines of a line are l J $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right)$ l ſ c 1 , c 1 , c $\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right]$, then-

> (A) $c > 0$ (B) $c = \pm \sqrt{3}$ (C) $0 < c < 1$ (D) $c > 2$

- **Q.10** The co-ordinates of points A, B, C, D are (a, 2, 1), $(1, -1, 1), (2, -3, 4)$ and $(a + 1, a + 2, a + 3)$ respectively. If $AB = 5$ and $CD = 6$, then a = (A) 2 (B) 3 (C) – 2 (D) – 3
- **Q.11** The number of straight lines are equally inclined to the three dimensional co-ordinate axes, is- (A) 2 (B) 4 (C) 6 (D) 8
- **Q.12** The acute angle between the line joining the point $(2, 1, -3)$, $(-3, 1, 7)$ and a line parallel to $\frac{x+1}{3} = \frac{y}{4} = \frac{z+1}{5}$ $z + 3$ 4 y 3 $\frac{x-1}{2} = \frac{y}{t} = \frac{z+3}{z}$ through the point $(-1, 0, 4)$ is-(A) J \backslash $\overline{}$ l $\frac{-1}{5\sqrt{10}}$ $\cos^{-1}\left(\frac{7}{\sqrt{2}}\right)$ (B) J) $\overline{}$ l $^{-1} \left(\frac{1}{\sqrt{10}} \right)$ $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ (C) J \backslash $\overline{}$ l $\frac{-1}{\sqrt{5}}\left(\frac{3}{5\sqrt{10}}\right)$ $\cos^{-1}\left(\frac{3}{\sqrt{2}}\right)$ (D) J) l $\frac{-1}{5\sqrt{10}}$ $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$

Q.13 The point of intersection of the lines
\n
$$
\frac{x-5}{3} = \frac{y-7}{-1} = \frac{z+2}{1}, \frac{x+3}{-36} = \frac{y-3}{2} = \frac{z-6}{4}
$$
\nis
\n(A) $\left(21, \frac{5}{3}, \frac{10}{3}\right)$ (B) $(2, 10, 4)$
\n(C) $(-3, 3, 6)$ (D) $(5, 7, -2)$

- **Q.14** If A, B, C, D are the points (2, 3, –1), $(3, 5, -3), (1, 2, 3), (3, 5, 7)$ respectively, then the angle between AB and CD is -
	- (A) $\frac{\pi}{2}$ π (B) $\frac{\pi}{3}$ π (C) $\frac{\pi}{4}$ π (D) $\frac{\pi}{6}$ π
- **Q.15** The angle between two lines whose direction cosines are given by $\ell + m + n = 0$, $\ell^2 + m^2 - n^2 = 0$ is- (A) $\pi/3$ (B) $\pi/6$ (C) $5\pi/6$ (D) $2\pi/3$
- **Q.16** If the points $(1, 1, k)$ and $(-3, 0, 1)$ be equidistant from the plane $3x + 4y - 12z + 13 = 0$, then k = $(A) 0$ (B) 1 (C) 2 (D) None of these
- **Q.17** The equation of the line passing through $(1, 2, 3)$ and parallel to the planes $x -y + 2z = 5$ and $3x + y + z = 6$, is-

(A)
$$
\frac{x-1}{-3} = \frac{y-2}{5} = \frac{z-3}{4}
$$

\n(B)
$$
\frac{x-1}{-3} = \frac{y-2}{-5} = \frac{z-1}{4}
$$

\n(C)
$$
\frac{x-1}{-3} = \frac{y-2}{-5} = \frac{z-1}{-4}
$$

\n(D) None of these

Q.18 If a plane passes through the point (1, 1, 1) and is perpendicular to the line 4 $z - 1$ 0 $y - 1$ 3 $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-1}{2}$ $=\frac{y-}{x}$ $\frac{y-1}{z} = \frac{y-1}{z} = \frac{z-1}{t}$, then its perpendicular distance from the origin is

(A)
$$
\frac{3}{4}
$$
 \t\t (B) $\frac{4}{3}$
(C) $\frac{7}{5}$ \t\t (D) 1

Q.19 The equations of the line passing through the point $(1, 2, -4)$ and perpendicular to the two

lines
$$
\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}
$$
 and
\n $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$ will be-
\n(A) $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z+4}{6}$
\n(B) $\frac{x-1}{-2} = \frac{y-2}{3} = \frac{z+4}{8}$
\n(C) $\frac{x-1}{3} = \frac{y-2}{2} = \frac{z+4}{8}$
\n(D) None of these

- **Q.20** Equation of the plane through (3, 4, –1) which is parallel to the plane $\vec{r} \cdot (2\hat{i} - 3\hat{j} + 5\hat{k}) + 7 = 0$ is- (A) $\vec{r} \cdot (2\hat{i} - 3\hat{j} + 5\hat{k}) + 11 = 0$ (B) $\vec{r} \cdot (3\hat{i} + 4\hat{j} - \hat{k}) + 11 = 0$ (C) $\vec{r} \cdot (3\hat{i} + 4\hat{j} - \hat{k}) + 7 = 0$ (D) $\vec{r} \cdot (2\hat{i} - 3\hat{j} + 5\hat{k}) - 7 = 0$
- $Q.21$ $\vec{r} \cdot \vec{n} = q$ is the equation of a plane normal to the vector n , the length of the perpendicular from the origin on the plane is (A) q \vec{n} | (C) q $|\vec{n}|$ $|$ (D) q/| \vec{n} |
- **Q.22** Equation of the plane through three points A, B, C with position vectors $-6\hat{i} + 3\hat{j} + 2\hat{k}$, $3\hat{i} - 2\hat{j} + 4\hat{k}$, $5\hat{i} + 7\hat{j} + 3\hat{k}$ is-(A) $\vec{r} \cdot (\hat{i} - \hat{j} - 7\hat{k}) + 23 = 0$ (B) $\vec{r} \cdot (\hat{i} + \hat{j} + 7\hat{k}) = 23$ (C) $\vec{r} \cdot (\hat{i} + \hat{j} - 7\hat{k}) + 23 = 0$ (D) $\vec{r} \cdot (\hat{i} - \hat{j} - 7\hat{k}) = 23$

Q.23 The lines
$$
\vec{r} = \hat{i} - \hat{j} + \lambda(2\hat{i} + \hat{k})
$$
 &
\n $\vec{r} = 2\hat{i} - \hat{j} + \mu(\hat{i} + \hat{j} - \hat{k})$
\n(A) intersect each other
\n(B) do not intersect
\n(C) intersect at $\vec{r} = 3\hat{i} - \hat{j} + \hat{k}$
\n(D) are parallel

Q.24 Equation of the plane containing the lines.

$$
\vec{r} = \hat{i} + 2\hat{j} - \hat{k} + \lambda(\hat{i} + 2\hat{j} - \hat{k}) \text{ and}
$$

\n
$$
\vec{r} = \hat{i} + 2\hat{j} - \hat{k} + \mu(\hat{i} + \hat{j} + 3\hat{k}) \text{ is-}
$$

\n(A) $\vec{r} \cdot (7\hat{i} - 4\hat{j} - \hat{k}) = 0$
\n(B) $7(x - 1) - 4(y - 1) - (z + 3) = 0$
\n(C) $\vec{r} \cdot (\hat{i} + 2\hat{j} - \hat{k}) = 0$
\n(D) $\vec{r} \cdot (\hat{i} + \hat{j} + 3\hat{k}) = 0$

- **Q.25** The Cartesian equation of the plane passing through the line of intersection of the planes \vec{r} . $(2\hat{i} - 3\hat{j} + 4\hat{k}) = 1$ & \vec{r} . $(\hat{i} - \hat{j}) + 4 = 0$ and perpendicular to the plane $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) + 8 = 0$ is- (A) $3x - 4y - 4z = 5$
	- (B) $x 2y + 4z = 3$ (C) $5x - 2y - 12z + 47 = 0$ (D) $2x + 3y + 4 = 0$
- **Q.26** If the line 2 $\frac{x-3}{2} = \frac{y+3}{k}$ $\frac{y+5}{k} = \frac{z+2}{k}$ $\frac{z+1}{z}$ is parallel to the plane $6x + 8y + 2z - 4 = 0$, then k (A) 1 (B) –1 $(C) 2$ (D) 3
- **Q.27** The equation of a line through $(-2, 3, 4)$ and parallel to the planes $2x + 3y + 4z = 5$ and $3x + 4y + 5z = 6$ are-

(A)
$$
\frac{x-2}{1} = \frac{y+3}{2} = \frac{z+4}{-1}
$$

\n(B)
$$
\frac{x+2}{2} = \frac{y-3}{3} = \frac{z-4}{1}
$$

\n(C)
$$
\frac{x+2}{1} = \frac{y-3}{-2} = \frac{z-4}{1}
$$

\n(D)
$$
\frac{x+2}{-1} = \frac{y-3}{-2} = \frac{z-4}{1}
$$

Q.1 A plane is such that the foot of perpendicular drawn from the origin to it is $(2, -1, 1)$. The distance of $(1, 2, 3)$ from the plane is-

$$
(A) \frac{3}{2} \qquad \qquad (B)
$$

(C) 2 (D) None of these

2 3

 $Q.2$ A line makes an angle θ both with x and yaxes. A possible value of θ is-

(A)
$$
\left[0, \frac{\pi}{4}\right]
$$
 (B) $\left[0, \frac{\pi}{2}\right]$
(C) $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ (D) $\left[\frac{\pi}{3}, \frac{\pi}{6}\right]$

Q.3 If the plane $x + y + z = 1$ is rotated through 90º about its line of intersection with the plane $x - 2y + 3z = 0$, the new position of the plane is-

> (A) $x - 5y + 4z = 1$ (B) $x - 5y + 4z = -1$ (C) $x - 8y + 7z = 2$ (D) $x - 8y + 7z = -2$

- **Q.4** The shortest distance between the lines $\vec{r} = -(\hat{i} + \hat{j} + \hat{k}) + \lambda (2\hat{i} + 3\hat{j} + 4\hat{k})$ and $\vec{r} = -\hat{i} + \mu (3\hat{i} + 4\hat{j} + 5\hat{k})$ is-(A) 1 (B) $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ (C) $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{3}}$ (D) $\frac{1}{\sqrt{6}}$ 1
- **Q.5** The angle between a diagonal of unit cube and an edge is-

(A)
$$
\cos^{-1} \frac{1}{3}
$$
 (B) $\cos^{-1} \frac{1}{\sqrt{3}}$
(C) $\sin^{-1} \frac{1}{\sqrt{3}}$ (D) $\tan^{-1} \frac{1}{3}$

Q.6 If $A = (0, 1, -2)$, $B = (2, -1, 0)$, $C = (1, 2, 3)$, then a bisector of angle BAC has direction ratios- $(A) 1, 1, 1$ (B) 1, 1, -1 (C) 0, -1 , 1 (D) None of these

- **Q.7** If the foot of perpendicular from the point $(1, -5, -10)$ to the plane $x - y + z = 5$ is (a, b, c) then $a + b + c =$ (A) 10 (B) –10 (C) 11 (D) –11
- **Q.8** The distance of the plane $x + 2y z = 2$ from the point $(2, -1, 3)$ measured in the direction with d.r.'s 2, 2, 1 is- (A) 1 (B) 2
	- (C) 3 6 5
- **Q.9** A variable plane makes with coordinate planes a tetrahedron of unit volume. The locus of the centroid of the tetrahedron is-
	- (A) $xyz = 6$ 32 3 (C) $x + y + z = 6$ (D) $x^3 + y^3 + z^3 = 3$
- **Q.10** An equation of the plane passing through the origin and containing the lines whose direction cosines are proportional to 1, -2 , 2 & 2, 3, -1 is- (A) $x - 2y + 2z = 0$ (B) $2x + 3y - z = 0$ (C) $x + 5y - 3z = 0$ (D) $4x - 5y - 7z = 0$
- **Q.11** The lines $\vec{r} = \vec{a} + \lambda (\vec{b} \times \vec{c})$ and $\vec{r} = \vec{b} + \mu(\vec{c} \times \vec{a})$ will intersect if (A) $\vec{a} \times \vec{c} = \vec{b} \times \vec{c}$ (B) $\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c}$ (C) b \rightarrow $\times \vec{a} = \vec{c} \times \vec{a}$ (D) None of these
- **Q.12** If θ denotes the acute angle between the line $\vec{r} = (\hat{i} + 2\hat{j} - \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k})$ and the plane \vec{r} .(2 $\hat{i} - \hat{j} + \hat{k}$) = 4, then sin $\theta + \sqrt{2} \cos \theta =$ (A) $1/\sqrt{2}$ (B) 1 $(C) \sqrt{2}$ (D) $1 + \sqrt{2}$

Q.13 Direction ratios of the line $x - y + z - 5 = 0$ $= x - 3y - 6$ are- (A) 3, 1, -2 (B) 2, -4, 1 (C) $\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}$ $\frac{1}{14}$, $\frac{-2}{\sqrt{14}}$ $\frac{3}{14}$, $\frac{1}{\sqrt{14}}$ $\frac{3}{14}$, $\frac{1}{\sqrt{14}}$, $\frac{-2}{\sqrt{14}}$ (D) $\frac{2}{\sqrt{41}}$, $\frac{-4}{\sqrt{41}}$, $\frac{1}{\sqrt{41}}$ $\frac{4}{41}, \frac{1}{\sqrt{4}}$ $\frac{2}{41}, \frac{-4}{\sqrt{41}}$ 2 –

- **Q.14** The distance between the line $\vec{r} = (\hat{i} + \hat{j} + 2\hat{k}) + \lambda(2\hat{i} + 5\hat{j} + 3\hat{k})$ the plane $\overrightarrow{r}.(2\hat{i}+\hat{j}-3\hat{k})=5$ is (A) $\frac{5}{\sqrt{14}}$ $rac{5}{14}$ (B) $rac{6}{\sqrt{14}}$ 6 (C) $\frac{7}{\sqrt{14}}$ 7 (D) $\frac{6}{\sqrt{14}}$ 8
- **Q.15** Volume of the tetrahedron included between the plane $2x - 3y - z - 6 = 0$ and the coordinate planes is- (A) 3 (B) 6 (C) 18 (D) 12
- **Q.16** If A(3, –4, 7), B(0, 2, 5), C(6, 3, 2) and D(5, 1, 4) are four given points (Projection of AB on CD)

: (projection of CD on AB) is-

- **Q.17** The points on the line $\frac{4}{1}$ $\frac{x+1}{1} = \frac{y+3}{3}$ $\frac{y+3}{3} = \frac{z-2}{-2}$ $\rm z$ 2 π distant $\sqrt{(14)}$ from the point in which the line meets the plane $3x + 4y + 5z - 5 = 0$ are- (A) $(0, 0, 0)$, $(2, -4, 6)$ (B) $(0, 0, 0)$, $(3, -4, -5)$ (C) $(0, 0, 0)$, $(2, 6, -4)$ (D) $(2, 6, -4)$, $(3, -4, -5)$
- **Q.18** Distance of the point (0, 1, 2) from the plane $2x - y + z = 3$ measured parallel to the line 1 $\frac{x}{1} = \frac{y}{-1}$ $\frac{y}{-1} = \frac{z}{-1}$ $\frac{z}{z}$ is equal to- (A) 0 (B) $3\sqrt{3}$ (C) $\sqrt{3}$ (D) None of these

Q.19 A variable plane is at a constant distance p from the origin and meets the axes in A, B and C. The locus of the centroid of the tetrahedron OABC is-

> (A) $x^{-2} + y^{-2} + z^{-2} = 16p^{-2}$ (B) $x^{-2} + y^{-2} + z^{-2} = 16p^{-1}$ (C) $x^{-2} + y^{-2} + z^{-2} = 16$ (D) None of these

- **Q.20** The planes $x = cy + bz$, $y = az + cx$, $z = bx + ay$ pass through one line, if $(A) a + b + c = 0$ (B) $a + b + c = 1$ (C) $a^2 + b^2 + c^2 = 1$ (D) $a^2 + b^2 + c^2 + 2abc = 1$
- **Q.21** A variable plane at a constant distance p from origin meets the co-ordinates axes in A, B, C. Through these points planes are drawn parallel to co-ordinate planes. Then locus of the point of intersection is-

(A)
$$
\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{p^2}
$$
 (B) $x^2 + y^2 + z^2 = p^2$
(C) $x + y + z = p$ (D) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = p$

- **Q.22** The equation of the planes passing through the line of intersection of the planes $3x - y 4z = 0$ and $x + 3y + 6 = 0$ whose distance from the origin is 1, are- (A) $x - 2y - 2z - 3 = 0$, $2x + y - 2z + 3 = 0$ (B) $x - 2y + 2z - 3 = 0$, $2x + y + 2z + 3 = 0$ (C) $x + 2y - 2z - 3 = 0$, $2x - y - 2z + 3 = 0$ (D) None of these
- **Q.23** The lines $\frac{\alpha}{\alpha-\delta} = \frac{y-\alpha}{\alpha} = \frac{z-\alpha}{\alpha+\delta}$ $\frac{a}{\alpha} = \frac{2 - a - a}{\alpha + \delta}$ $\frac{-a+a}{\alpha-\delta} = \frac{y-a}{\alpha}$ $\frac{x-a+d}{a} = \frac{y-a}{y-a} = \frac{z-a-d}{z-a}$ and $\beta + \gamma$ $\frac{\partial}{\beta} = \frac{2 - \theta - \theta}{\beta + \gamma}$ $\frac{y - y + c}{\beta - \gamma} = \frac{y - y}{\beta}$ $\frac{x-b+c}{2} = \frac{y-b}{2} = \frac{z-b-c}{2}$ are coplanar and then equation to the plane in which they lie, is- (A) $x + y + z = 0$ (B) $x - y + z = 0$ (C) $x - 2y + z = 0$ (D) $x + y - 2z = 0$
	- 3-D COORDINATE GEOMETRY **86**

Q.24 If P_1 and P_2 are the lengths of the perpendiculars from the points (2, 3, 4) and (1, 1, 4) respectively from the plane $3x - 6y + 2z + 11 = 0$, then P₁ and P₂ are the roots of the equation-

(A) $P^2 - 23P + 7 = 0$ (B) $7P^2 - 23P + 16 = 0$ (C) $P^2 - 17P + 16 = 0$ (D) $P^2 - 16P + 7 = 0$

- **Q.25** I. The ratio in which the line segment joining $(2, 4, 5)$ and $(3, 5, -4)$ is divided by the yzplane is 2 : 3.
	- II. The line joining (x_1, y_1, z_1) and (x_2, y_2, z_2) is divided by xy-plane in the ratio $-z_1$: z_2 .

Which of the statement is true?

- (A) both I and II (B) only I
- (C) only II (D) neither I nor II

Statement type questions

Each of the questions given below consists of Statement -I and Statement- II. Use the following key to choose the appropriate answer.

- **(A) If both Statement- I Statement- II are true, and Statement- II is the correct explanation of Statement- I.**
- **(B) If Statement- I and Statement-II are true but Statement-II is not the correct explanation of Statement- I**
- **(C) If Statement- I is true but Statement- II is false**
- **(D) If Statement- I is false but Statement- II is true.**
- **Q. 26 Statement-1 (A) :** The angle between the rays of with d.r's $(4, -3, 5)$ and $(3, 4, 5)$ is $\pi/3$. **Statement-2 (R)** The angle between the rays whose d.c's are ℓ_1 , m_1 , n_1 and ℓ_2 , m_2 , n_2 is given by θ , whose cos $\theta = \ell_1 \ell_2 + m_1 m_2 + n_1 n_2$
- **Q.27 Statement 1 (A) :** A line makes 60° with xaxis and 30º with y-axis then it makes 90° with z-plane.

Statement 2 (R) :

If a ray makes angles α , β , γ with x-axis, y-axis and z-axis respectively then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 1$

Q.28 Statement- 1 (**A**) : If the lines $\vec{r} = \vec{a} + \lambda \vec{b}$ and $\vec{r} = \vec{c} + \mu \vec{d}$ intersects at a point then $(\vec{c} - \vec{a})$. $\{\vec{b} \times \vec{d}\} = 0$ \rightarrow \rightarrow \vec{a} \vec{i} **Statement- 2 (R) :** Two coplanar lines

always intersects.

 $a_1a_2 + b_1b_2 + c_1c_2 = 0$

Q.29 Statement- 1 (**A**) : If lines $x = ay + b$, $z = 3y + 4$ and $x = 2y + 6$, $z = ay + d$ are perpendicular to each other then $a = 1/5$ **Statement-** $2(R)$ **: If two lines with d.rs** a_1, b_1, c_1 and a_2 , b_2 , c_2 are perpendicular then

Q.30 Statement- 1 (A) : The line of intersection of the planes $2x + 3y + z = 10$ and $x + 3y + 2z =$ 5 is parallel to vector $\hat{i} - \hat{j} + \hat{k}$ **Statement-2 (R):** The line of intersection of

> two non parallel planes $\vec{r} \cdot \vec{n}_1 = \lambda_1$ and $\vec{r} \cdot \vec{n}_2 = \lambda_2$ is always parallel to $\vec{n}_1 \times \vec{n}_2$

Q.31 List-I List-II (P) The points $(-1, 0, 7)$ (1) 22/7 $(3, 2, -k)$ and $(5, 3, -2)$ are collinear then $k =$ (Q) The length of the (2) 1 projection of the line segment joining the points $(-1, 0, 3)$ and $(2, 5, 1)$ on the line whose d.r's are 6, 2, 3 is (R) The distance of the point (3) –1 $(1, -2, 8)$ from the plane $2x - 3y + 6z = 63$ is (S) The distance between the (4) 1/6 parallel planes $2x - 2y + z + 3 = 0$, $4x - 4y + 2z + 5 = 0$ Correct match for **List-I** from **List-II** is P Q R S (A) 1 4 5 3 (B) 3 1 2 4 (C) 2 5 1 2 (D) 4 2 3 1

Passage based questions

Passage-1

Consider the line $\frac{1}{2}$ $\frac{x-1}{2}$ = 1 y $\frac{y}{-1} = \frac{z+1}{2}$ $\frac{z+1}{z}$ and the point $C(-1, 1, 2)$. Let the point D be the image of C in the line.

Q.32 The distance of C from the line is

(A)
$$
\frac{\sqrt{5}}{3}
$$
 (B) $\frac{2}{3}\sqrt{5}$
(C) $\frac{4}{3}\sqrt{5}$ (D) $\frac{5}{3}\sqrt{5}$

Q.33 The distance of the origin from the plane through C and the line is

(A)
$$
\frac{1}{\sqrt{5}}
$$
 (B) $\frac{2}{\sqrt{5}}$
(C) $\frac{3}{\sqrt{5}}$ (D) $\frac{4}{\sqrt{5}}$

Q.34 The distance of D from the origin is

LEVEL- 4 (Question asked in previous AIEEE and IIT-JEE)

SECTION –A

- **Q.1** If the lines $\frac{A}{-3}$ $\frac{x-1}{2}$ = 2k $\frac{y-2}{2k} = \frac{z-2}{2}$ $\frac{z-3}{z}$ and 3k $\frac{x-1}{3k} = \frac{y-1}{1}$ $\frac{y-5}{1} = \frac{z-6}{-5}$ $z - 6$ _ $\frac{-6}{x}$ are perpendicular to each other then $k =$ **[AIEEE 2002]** (A) $\frac{5}{7}$ $\frac{5}{7}$ (B) $\frac{7}{5}$ $\frac{7}{5}$ (C) $\frac{-7}{10}$ $\frac{-7}{10}$ (D) $\frac{-1}{7}$ –10
- **Q.2** The angle between the lines, whose direction ratios are 1, 1, 2 and $\sqrt{3} - 1, -\sqrt{3} - 1, 4$, is-**[AIEEE 2002]** (A) 45° (B) 30° (C) 60° (D) 90°
- **Q.3** The acute angle between the planes $2x y + z = 6$ and $x + y + 2z = 3$ is- [AIEEE 2002] (A) 30° (B) 45° (C) 60° (D) 75°
- **Q.4** The lines $\frac{1}{1}$ $\frac{x-2}{1} = \frac{y-1}{1}$ $\frac{y-3}{1} = \frac{z-4}{-k}$ $z - 4$ $\frac{-4}{1}$ and k $\frac{x-1}{k} = \frac{y-2}{2}$ $\frac{y-4}{2} = \frac{z-1}{1}$ $\frac{z-5}{1}$ are coplanar if-**[AIEEE 2003]** (A) $k = 3$ or -3 (B) $k = 0$ or -1 (C) $k = 1$ or -1 (D) $k = 0$ or -3
- **Q.5** A tetrahedron has vertices at O (0, 0, 0), $A(1, 2, 1), B(2, 1, 3)$ and C (-1, 1, 2). Then the angle between the faces OAB and ABC will be-

[**AIEEE 2003**]
\n(A) 90°
\n(B)
$$
\cos^{-1} \left(\frac{19}{35} \right)
$$

\n(C) $\cos^{-1} \left(\frac{17}{31} \right)$
\n(D) 30°

Q.6 Two systems of rectangular axes have the same origin. If a plane makes intercepts a, b, c and a' , b' , c' on the two systems of axes respectively, then **[AIEEE-2003]**

(A)
$$
a^2 + b^2 + c^2 = a'^2 + b'^2 + c'^2
$$

\n(B) $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a'} + \frac{1}{b'} + \frac{1}{c'}$
\n(C) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2}$
\n(D) $\frac{1}{a^2 - a'^2} + \frac{1}{b^2 - b'^2} + \frac{1}{c^2 - c'^2} =$

- $Q.7$ A line makes the same angle θ , with each of the x and z axis. If the angle β , which it makes with y- axis, is such that $\sin^2 \beta = 3 \sin^2 \theta$, then $\cos^2 \theta$ equals- **[AIEEE 2004]** $(A) 2/3$ (B) 1/5 (C) $3/5$ (D) $2/5$
- **Q.8** Distance between two parallel planes $2x + y + 2z = 8$ and $4x + 2y + 4z + 5 = 0$ is **[AIEEE 2004]** (A) 3/2 (B) 5/2 (C) 7/2 (D) 9/2
- **Q.9** A line with direction cosines proportional to 2, 1, 2 meets each of the lines $x = y + a = z$ and $x + a = 2y = 2z$. The coordinates of each of the points of intersection are given by-

[AIEEE 2004]

= 0

(A) (3a, 3a, 3a), (a, a, a) (B) (3a, 2a, 3a), (a, a, a) (C) (3a, 2a, 3a), (a, a, 2a) (D) (2a, 3a, 3a), (2a, a, a)

Q.10 If the straight lines $x = 1 + s$, $y = -3 - \lambda s$, $z = 1 + \lambda s$ and $x = \frac{1}{2}$ $\frac{t}{x}$, y = 1 + t, z = 2 – t, with parameters s and t respectively are coplanar then λ equals- **[AIEEE 2004]** $(A) - 2$ (B) – 1 $(C) - 1/2$ (D) 0

- **Q.11** If the angle θ between the line 1 $\frac{x+1}{1} = \frac{y-2}{2}$ $\frac{y-1}{2} = \frac{z-2}{2}$ $\frac{z-2}{z}$ and the plane $2x - y + \sqrt{\lambda} z + 4 = 0$ is such that sin θ $=\frac{1}{3}$ 1 the value of is – **[AIEEE-2005]** (A) $\frac{5}{3}$ 5 (B) $\frac{1}{5}$ 3 (C) $\frac{3}{4}$ $\frac{3}{4}$ (D) $\frac{-4}{3}$ 4
- **Q.12** The angle between the lines $2x = 3y = -z$ and $6x = -y = -4z$ is-
[AIEEE-2005] (A) 0° (B) 90° (C) 45° (D) 30°
- **Q.13** The distance between the line $\vec{r} = 2\hat{i} 2\hat{j} + 3\hat{k}$ $+\lambda(\hat{i}-\hat{j}+4\hat{k})$ and the plane $\vec{r} \cdot (\hat{i}+5\hat{j}+\hat{k})=5$ is **[AIEEE-2005]** (A) $\frac{16}{9}$ $\frac{10}{9}$ (B) $\frac{10}{3\sqrt{3}}$ $\frac{10}{\sqrt{3}}$ (C) $\frac{3}{10}$ $rac{3}{0}$ (D) $rac{10}{3}$ 10
- **Q.14** The two lines $x = ay + b$, $z = cy + d$; and $x = a'y + b'$, $z = c'y + d'$ are perpendicular to each other if – **[AIEEE-2006/AIEEE -2003]**

(A) aa' + cc' = 1
\n(B)
$$
\frac{a}{a'} + \frac{c}{c'} = -1
$$

\n(C) $\frac{a}{a'} + \frac{c}{c'} = 1$
\n(D) aa' + cc' = -1

- **Q.15** The image of the point $(-1, 3, 4)$ in the plane $x - 2y = 0$ is – **[AIEEE 2006]** (A) $(15, 11, 4)$ I J $\left(-\frac{17}{2}, -\frac{19}{2}, 1\right)$ l $\left(-\frac{17}{3}, -\frac{19}{3}, 1\right)$ $\frac{7}{3}, -\frac{19}{3}$ 17 (C) $(8, 4, 4)$ (D) None of these
- **Q.16** Let L be the line of intersection of the planes $2x + 3y + z = 1$ and $x + 3y + 2z = 2$. If L makes an angle α with the positive x-axis, then $\cos \alpha$ equals- **[AIEEE 2007]**
	- (A) $1/\sqrt{3}$ (B) 1/2
	- (C) 1 (D) $1/\sqrt{2}$

Q.17 If a line makes an angle of $\pi/4$ with the positive directions of each of x-axis and y-axis, then the angle that the line makes with the positive direction of the z-axis is-

- **Q.18** If the straight lines $\frac{A}{k}$ $\frac{x-1}{k} = \frac{y-2}{2}$ $\frac{y-2}{2} = \frac{z-3}{3}$ $\frac{z-3}{z}$ and 3 $\frac{x-2}{3} = \frac{y-2}{k}$ $\frac{y-3}{k} = \frac{z-3}{2}$ $\frac{z-1}{z}$ intersect at a point, then the integer k is equal to- **[AIEEE-2008]** $(A) 5$ (B) 2 $(C) -2$ (D) –5
- **Q.19** The line passing through the points (5, 1, a) and (3, b, 1) crosses the yz-plane at the point I J $\left(0, \frac{17}{1}, \frac{-13}{1}\right)$ l $\binom{17}{2}$ 2 0, $\frac{17}{2}$, $\frac{-13}{2}$. Then [**AIEEE-2008**] (A) $a = 4$, $b = 6$ (B) $a = 6$, $b = 4$ (C) $a = 8$, $b = 2$ (D) $a = 2$, $b = 8$
- **Q.20** Let the line $\frac{4}{3}$ $\frac{x-2}{3} = \frac{y-3}{-5}$ $y - 1$ $\frac{-1}{5} = \frac{2+1}{2}$ $\frac{z+2}{z}$ lie in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) equals : **[AIEEE-2009]** $(A) (-6, 7)$ (B) $(5, -15)$ $(C) (-5, 5)$ (D) $(6, -17)$
- **Q.21** The projections of a vector on the three coordinate axis are $6, -3, 2$ respectively. The direction cosines of the vector are :

Q.22 A line AB in three dimensional space makes angles 45° and 120° with the positive x – axis and the positive $y - axis$ respectively. If AB makes an acute angle θ with the positive z – axis, then θ equals - **[AIEEE-2010]** (A) 30° (B) 45° (C) 60° (D) 75°

Q.23 Statement – 1 : The point A(3, 1, 6) is the mirror image of the point $B(1, 3, 4)$ in the plane $x - y + z = 5$.

> **Statement – 2** : The plane $x - y + z = 5$ bisects the line segment joining $A(3, 1, 6)$ and B(1, 3, 4).

[AIEEE-2010]

- (A) Statement -1 is true, Statement -2 is true; Statement -2 is a correct explanation for Statement -1
- (B) Statement -1 is true, Statement -2 is true; Statement -2 is *not* a correct explanation for Statement -1.
- (C) Statement -1 is true, Statement -2 is false.
- (D) Statement -1 is false, Statement -2 is ture.

Q.24 Statement – 1 :

The point $A(1, 0, 7)$ is the mirror image of the point B $(1, 6, 3)$ in the line :

$$
\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}.
$$

Statement – 2 :

The line : $\frac{A}{1} = \frac{y}{2} = \frac{z}{3}$ $z - 2$ 2 $y - 1$ 1 $\frac{x}{-} = \frac{y-1}{-} = \frac{z-1}{-}$ $=\frac{y-1}{z}=\frac{z-2}{z}$ bisects the line

segment joining $A(1, 0, 7)$ and $B(1, 6, 3)$.

[AIEEE-2011]

- (A) Statement -1 is true, Statement -2 is true; Statement -2 is a correct explanation for Statement -1
- (B) Statement -1 is true, Statement -2 is true; Statement -2 is *not* a correct explanation for Statement -1.
- (C) Statement -1 is true, Statement -2 is false.
- (D) Statement -1 is false, Statement -2 is true.

Q.25 If the angle between the line
$$
x = \frac{y-1}{2} = \frac{z-3}{\lambda}
$$

and the plane $x + 2y + 3z = 4$ is $\cos^{-1} \left(\sqrt{\frac{5}{14}} \right)$,
then λ equals -
(A) 2/3 (B) 3/2
(C) 2/5 (D) 5/2

Q.26 An equation of a plane parallel to the plane $x - 2y + 2z - 5 = 0$ and at a unit distance from the origin is : **[AIEEE-2012]** (A) $x - 2y + 2z + 1 = 0$ (B) $x - 2y + 2z - 1 = 0$ (C) $x - 2y + 2z + 5 = 0$ (D) $x - 2y + 2z - 3 = 0$

Q.27 If the lines
$$
\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}
$$
 and
 $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then k is equal to :
[AIEEE-2012]

(A) $\frac{2}{9}$ $\frac{2}{2}$ (B) 2 $\frac{9}{2}$ (C) 0 (D) –1

Q.28 If the lines $\frac{1}{1}$ $\frac{x-2}{1} = \frac{y-1}{1}$ $\frac{y-3}{1} = \frac{z-4}{-k}$ $\rm z$ – 4 $\frac{-4}{1}$ and

k $\frac{x-1}{k} = \frac{y-2}{2}$ $\frac{y-4}{2} = \frac{z-1}{1}$ $\frac{z-5}{z}$ are coplanar, then k can have – **[JEE Main - 2013]** (A) exactly two values (B) exactly three values (C) any value (D) exactly one value

Q.29 Distance between two parallel planes $2x + y + 2z = 8$ and $4x + 2y + 4z + 5 = 0$ is –

 [JEE Main - 2013]

(A)
$$
\frac{7}{2}
$$
 (B) $\frac{9}{2}$ (C) $\frac{3}{2}$ (D) $\frac{5}{2}$

SECTION-B

Q.1 If line $\frac{A}{1}$ $\frac{x-4}{1} = \frac{y-1}{1}$ $\frac{y-2}{1} = \frac{z-2}{2}$ $\frac{z-k}{z}$ lies in the plane $2x - 4y + z = 7$ then the value of $k = ?$ **[IIT Scr.2003]** (A) $k = -1$ (B) $k = 7$ (C) $k = -7$ (D) no value of k **Q.2** Two lines $\frac{1}{2}$ $\frac{x-1}{2} = \frac{y+1}{3}$ $\frac{y+1}{3} = \frac{z-1}{4}$ $\frac{z-1}{z}$ and 1 $\frac{x-3}{1} = \frac{y-3}{2}$ $\frac{y-k}{2} = \frac{z}{1}$ $\frac{z}{x}$ intersect at a point then k is- **[IIT Scr.2004]** $(A) 3/2$ (B) 9/2

3-D COORDINATE GEOMETRY **91**

 (C) 2/9 (D) 2

- **Q.3** A plane at a unit distance from origins cuts at three axes at P, Q, R points. \triangle PQR has centroid at (x, y, z) point $\&$ satisfy $\frac{1}{x^2}$ $\frac{1}{2} + \frac{1}{y^2}$ $\frac{1}{2} + \frac{1}{z^2}$ $\frac{1}{2}$ = k, then k = **[IIT Scr.2005]** $(A) 9$ (B) 1 (C) 3 (D) 4
- **Q.4** A plane passes through (1, –2, 1) and is perpendicular to two planes $2x - 2y + z = 0$ and $x - y + 2z = 4$. The distance of the plane from point (1, 2, 2) is- **[IIT-2006]**

(A) $2\sqrt{2}$ (B) 0 (C) 1 (D) $\sqrt{2}$

Q.5 A line perpendicular to $x + 2y + 2z = 0$ and passes through (0, 1, 0) then the perpendicular distance of this line from the origin is- **[IIT-2007]**

(A)
$$
\frac{\sqrt{5}}{3}
$$
 (B) $\frac{\sqrt{3}}{2}$
(C) $\frac{-\sqrt{3}}{2}$ (D) None of these

Q.6 Consider the planes $3x - 6y - 2z = 15$ and $2x + y - 2z = 5$

> **STATEMENT-1**: The parametric equations of the line of intersection of the given planes are $x = 3 + 14t$, $y = 1 + 2t$, $z = 15t$. **because**

> **STATEMENT-2** : The vector $14\hat{i} + 2\hat{j} +$

- $15 \hat{k}$ is parallel to the line of intersection of given planes. **[IIT-2007]**
- (A) Statement–1 is True, Statement–2 is True; Statement–2 is a correct explanation for Statement–1.
- (B) Statement–1 is True, Statement–2 is True; Statement–2 is NOT a correct explanation for Statement–1
- (C) Statement–1 is True, Statement–2 is False
- (D) Statement–1 is False, Statement–2 is True

Passage :

Consider the lines
$$
x + 1
$$

$$
L_1: \frac{x+1}{3} = \frac{y+2}{1} = \frac{z+1}{2};
$$

$$
L_2: \frac{x-2}{1} = \frac{y+2}{2} = \frac{z-3}{3}
$$

Q.7 The unit vector perpendicular to both L_1 and L_2 is- **[IIT 2008]** (A) $\frac{-\hat{i} + 7\hat{j} + 7\hat{k}}{\sqrt{n}}$ (B) $\frac{-\hat{i} - 7\hat{j} + 5\hat{k}}{\sqrt{n}}$

$$
\sqrt{99}
$$
 5 $\sqrt{3}$
(C) $\frac{-\hat{i} + 7\hat{j} + 5\hat{k}}{5\sqrt{3}}$ (D) $\frac{7\hat{i} - 7\hat{j} - \hat{k}}{\sqrt{99}}$

Q.8 The shortest distance between L_1 and L_2 is-**[IIT 2008]**

(A) 0 \t(B)
$$
\frac{17}{\sqrt{3}}
$$
 \t(C) $\frac{41}{5\sqrt{3}}$ \t(D) $\frac{17}{5\sqrt{3}}$

Q.9 The distance of the point (1, 1, 1) from the plane passing through the point $(-1, -2, -1)$ and whose normal is perpendicular to both the lines L_1 and L_2 is- **[IIT 2008]**

(A)
$$
\frac{2}{\sqrt{75}}
$$
 (B) $\frac{7}{\sqrt{75}}$ (C) $\frac{13}{\sqrt{75}}$ (D) $\frac{23}{\sqrt{75}}$

Q.10 Let P(3, 2, 6) be a point in space and Q be a point on the line - **[IIT 2009]** $\vec{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu(-3\hat{i} + \hat{j} + 5\hat{k})$

> Then the value of μ for which the vector PQ is parallel to the plane $x - 4y + 3z = 1$ is

- (A) $\frac{1}{4}$ $\frac{1}{4}$ (B) $-\frac{1}{4}$ $\frac{1}{4}$ (C) $\frac{1}{8}$ $rac{1}{8}$ (D) $-\frac{1}{8}$ 1
- **Q.11** A line with positive direction cosines passes through the point $P(2, -1, 2)$ and makes equal angles with the coordinate axes. The line meets the plane $2x + y + z = 9$ at point O. The length of the line segment PQ equals-

[IIT 2009]

- (A) 1 2 $(C)\sqrt{3}$ (D) 2
- **Q.12** If the distance between the plane $x 2y + z = d$ and the plane containing the lines 4 $z - 3$ 3 $y - 2$ 2 $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-1}{2}$ $=\frac{y-}{x}$ $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-3}{5}$ $z - 4$ 4 $y - 3$ 3 $\frac{x-2}{2} = \frac{y-3}{2} = \frac{z-3}{2}$ $=\frac{y-}{x}$ Ξ is $\sqrt{6}$, then | d | is – **[IIT 2010]** (A) $\sqrt{6}$ 6 (B) 6 (C) $1/\sqrt{6}$ (D) $1/6$

- **Q.13** Equation of the plane containing the straight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ z 3 y 2 $\frac{x}{2} = \frac{y}{2} = \frac{z}{x}$ and perpendicular to the plane containing the straight lines $\frac{4}{3} = \frac{3}{4} = \frac{2}{2}$ z 4 y 3 $\frac{x}{-} = \frac{y}{-} =$ and 3 z 2 y 4 $\frac{x}{y} = \frac{y}{y} =$ [IIT 2010] (A) $x + 2y - 2z = 0$ (B) $3x + 2y - 2z = 0$
	- (C) $x 2y + z = 0$ (D) $5x + 2y 4z = 0$
- **Q.14** If the distance of the point P $(1, -2, 1)$ from the plane $x + 2y -2z = \alpha$, where $\alpha > 0$, is 5, then the foot of the perpendicular from P to the plane is - **[IIT 2010]**

(A)
$$
\left(\frac{8}{3}, \frac{4}{3}, -\frac{7}{3}\right)
$$
 (B) $\left(\frac{4}{3}, -\frac{4}{3}, \frac{1}{3}\right)$
(C) $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$ (D) $\left(\frac{2}{3}, -\frac{1}{3}, \frac{5}{2}\right)$

Q.15 The point P is the intersection of the straight line joining the points $Q(2, 3, 5)$ and $R(1, -1, 4)$ with the plane $5x - 4y - z = 1$. If S is the foot of the perpendicular drawn from the point $T(2, 1, 4)$ to QR, then the length of the line segment PS is **[IIT 2012]**

(A)
$$
\frac{1}{\sqrt{2}}
$$
 (B) $\sqrt{2}$ (C) 2 (D) $2\sqrt{2}$

Q.16 The equation of a plane passing through the line of intersection of the planes $x + 2y + 3z = 2$ and $x - y + z = 3$ and at a distance $\frac{2}{\sqrt{3}}$ $\frac{2}{\sqrt{2}}$ from the point (3, 1, -1) is **[IIT 2012]** (A) $5x-11y+z=17$ (B) $\sqrt{2}x + y = 3\sqrt{2} - 1$ (C) $x+y+z=$ $\sqrt{3}$ (D) $x-\sqrt{2}y=1-\sqrt{2}$ **Q.17** If the straight lines $\frac{\lambda}{2}$ $\frac{x-1}{2} = \frac{y+1}{k}$ $\frac{y+1}{k} = \frac{z}{2}$ $\frac{z}{z}$ and 5 $\frac{x+1}{5} = \frac{y+1}{2}$ $\frac{y+1}{z}$ = k $\frac{z}{z}$ are coplanar, then the plane(s) containing these two lines is (are) **[IIT 2012]** (A) $y + 2z = -1$ (B) $y + z = -1$ (C) $y - z = -1$ (D) $y - 2z = -1$ **Q.18** Perpendiculars are drawn from points on the line 3 z 1 $y+1$ 2 $\frac{x+2}{2} = \frac{y+1}{-1} =$ $\frac{+2}{2} = \frac{y+1}{z} = \frac{z}{z}$ to the plane $x + y + z = 3$. The feet of perpendiculars lie on the line –

[JEE - Advance 2013]

(A)
$$
\frac{x}{5} = \frac{y-1}{8} = \frac{z-2}{-13}
$$
 (B) $\frac{x}{2} = \frac{y-1}{3} = \frac{z-2}{-5}$
(C) $\frac{x}{4} = \frac{y-1}{3} = \frac{z-2}{-7}$ (D) $\frac{x}{2} = \frac{y-1}{-7} = \frac{z-2}{5}$

Q.19 A line ℓ passing through the origin is perpendicular to the lines ℓ_1 : $(3 + t)$ \hat{i} + $(-1 + 2t)$ \hat{j} + $(4 + 2t)$ \hat{k} , $-\infty < t < \infty$ ℓ_2 : $(3+2s)$ \hat{i} + $(3+2s)$ \hat{j} + $(2+s)$ \hat{k} , $-\infty < s < \infty$ Then the coordinates(s) of the point(s) on ℓ_2 at a distance of $\sqrt{17}$ from the point of intersection of ℓ and ℓ_1 is(are) **[JEE - Advance 2013]** (A) $\left(\frac{7}{3}, \frac{7}{3}, \frac{5}{3}\right)$ I $\left(\frac{7}{2},\frac{7}{2},\frac{5}{2}\right)$ l ſ 3 $\frac{7}{3}, \frac{5}{3}$ $\frac{7}{3}, \frac{7}{3}$ $\left(\frac{7}{2}, \frac{7}{2}, \frac{5}{2}\right)$ (B) (-1, -1, 0) (C) $(1, 1, 1)$ I $\left(\frac{7}{1},\frac{7}{1},\frac{8}{1}\right)$ $\left(\frac{7}{2}, \frac{7}{2}, \frac{8}{2} \right)$

Q.20 Two lines L₁:
$$
x = 5
$$
, $\frac{y}{3-\alpha} = \frac{z}{-2}$ and L₂: $x = \alpha$,

$$
\frac{y}{-1} = \frac{z}{2-\alpha}
$$
 are coplanar, Then α can take
value(s)– [JEE - Advance 2013]
(A) 1 (B) 2 (C) 3 (D) 4

Q.21 Consider the lines L₁:
$$
\frac{x-1}{2} = \frac{y}{-1} = \frac{z+3}{1}
$$
, L₂

 $\frac{1}{1}$ $\frac{x-4}{1} = \frac{y+1}{1}$ $\frac{y+3}{1} = \frac{z+3}{2}$ $\frac{z+3}{z}$ and the planes P_1 : $7x + y + 2z = 3$, P_2 : $3x + 5y - 6z = 4$. Let $ax + by + cz = d$ be the equation of the plane passing through the point of intersection of lines L_1 and L_2 , and perpendicular to planes P_1 and P_2 . Match List-I with List-II and select the correct answer using the code given below the lists :

LEVEL- 2

LEVEL- 4 SECTION-A

SECTION-B

1.[B] equation of line
$$
\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}
$$
 ...(i)
equation of plane 2x - 4y + z = 7 ...(ii)

line (i) lies in plane (ii)

 \therefore (4, 2, k) satisfies equation (ii) $2(4) - 4(2) + k = 7$ $k = 7$

2.[B] lines $\frac{\lambda}{2}$ $\frac{x-1}{2} = \frac{y+1}{3}$ $\frac{y+1}{3} = \frac{z-4}{4}$ $\frac{z-1}{z}$ and 1 $\frac{x-3}{2}$ = 2 $\frac{y-k}{2} = \frac{z}{1}$ $\frac{z}{x}$ intersect at a point \therefore lines are coplanar $\mathbb{Z}^{\mathbb{Z}}$ 1 2 1 2 3 4 = 0 $|2 \ k+1 -1|$ $2(-5)$ –(k + 1) (–2) –1(1) = 0 $-10 + 2k + 2 - 1 = 0$ $2k = 9 \implies k = 9/2$

3.[A] equation of plane $\frac{A}{a} + \frac{y}{b} + \frac{z}{c}$ z b y a $\frac{x}{-} + \frac{y}{-} + \frac{z}{-} = 1$...(1) $P(a, 0, 0), Q(0, b, 0), R(0, 0, c)$ centroid of \triangle PQR is (x, y, z)

$$
x = \frac{a}{3}
$$
, $y = \frac{b}{3}$, $z = \frac{c}{3}$

according to question

length of \perp from origin to the plane = 1

$$
\frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}} = 1
$$

$$
\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = 1
$$

$$
\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = 9
$$
...(2)

above relation (2) compare the equation

$$
\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = k \implies k = 9
$$

4.[A] equation of plane passing through (1, –2, 1) is given by $a(x-1) + b(y+2) + c(z-1) = 0$...(1) plane (1) is \perp to planes $2x - 2y + z = 0$ and $x - y + 2z = 4$ $2a - 2b + c = 0$ $a - b + 2c = 0$ 0 c 1 b 1 $\frac{a}{-} = \frac{b}{-}$ a, b, c put in equation (1) $x + y + 1 = 0$...(2)

$$
\perp
$$
 distance from (1, 2, 2) to the plane (2)

$$
= \frac{1+2+1}{\sqrt{1+1}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}
$$

5.[A] Equation of line passing through (0, 1, 0) and perpendicular to plane $x + 2y + 2z = 0$ is given by 1 $\frac{x-0}{1} = \frac{y-2}{2}$ $\frac{y-1}{2} = \frac{z-2}{2}$ $\frac{z-0}{z}$ = r

 $x = r$, $y = 2r + 1$, $z = 2r$ coordinate of $C(r, 2r + 1, 2r)$ direction ratio of OC; $r, 2r + 1, 2r$ A B_B O (0, 0, 0) $AB \perp OC$ $a_1a_2 + b_1b_2 + c_1c_2 = 0$ $1(r) + 2(2r + 1) + 2(2r) = 0$ $9r = -2$ $r = -2/9$ co-ordinate of C $\left[-\frac{2}{9}, \frac{5}{9}, -\frac{1}{9}\right]$ I 1 L $\left[-\frac{2}{9}, \frac{5}{9}, -\frac{4}{9}\right]$ $\frac{5}{9}$, $-\frac{4}{9}$ $\frac{2}{9}, \frac{5}{9}$ 2 $OC = \sqrt{\frac{4}{(9)^2} + \frac{25}{(9)^2} + \frac{10}{(9)^2}}$ 16 (9) 25 (9) $\frac{4}{(9)^2} + \frac{25}{(9)^2} + \frac{16}{(9)^2} = \frac{\sqrt{4}}{9}$ $\frac{45}{9} = \frac{\sqrt{9}}{9}$ $9\sqrt{5}$ $=\sqrt{\frac{5}{9}}$ $\frac{5}{9} = \frac{\sqrt{5}}{3}$ 5

6.[D] Let ℓ , m, n be d.r.'s of the line of intersection of the plane then

$$
3\ell - 6m - 2n = 0
$$

$$
2\ell + m - 2n = 0
$$

$$
\frac{\ell}{14} = \frac{m}{2} = \frac{n}{15}
$$

 \therefore line of intersection is parallel to the vector $14\hat{i} + 2\hat{j} + 15\hat{k}$ also (3, 1, 0) does not lie on the plane $3x - 6y - 2z = 15$ therefore (3, 1, 0) does not lie on the line of intersection. Hence S_1 is false and S_2 is true.

7.[B] lines are given

$$
L_1: \frac{x+1}{3} = \frac{y+2}{1} = \frac{z+1}{2}
$$

$$
L_2: \frac{x-2}{1} = \frac{y+2}{2} = \frac{z-3}{3}
$$

The direction ratio of L_1 and L_2 are (3, 1, 2) and (1, 2, 3) and so the vector perpendicular to both is given by

$$
\begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{vmatrix} = -\hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 5\hat{\mathbf{k}}
$$

Then the unit vector =
$$
\frac{-\hat{i} - 7\hat{j} + 5\hat{k}}{\sqrt{1 + 49 + 25}} = \frac{-\hat{i} - 7\hat{j} + 5\hat{k}}{5\sqrt{3}}
$$

8.[D] Let
$$
\vec{n}_1 = 3\hat{i} + \hat{j} + 2\hat{k}
$$
, $\vec{n}_2 = \hat{i} + 2\hat{j} + 3\hat{k}$

$$
\vec{\alpha} = -\hat{i} - 2\hat{j} - \hat{k}, \ \vec{\beta} = 2\hat{i} - 2\hat{j} + 3\hat{k}
$$

(-1, -2, -1)
direction ratio (3,1,2)

$$
(2, -2, 3)
$$

direction ratio (1,2,3)
Shortest distance between L₁ and L₂

$$
= \frac{|(\vec{\alpha} - \vec{\beta}).(\vec{n}_1 \times \vec{n}_2)|}{|\vec{n}_1 \times \vec{n}_2|}
$$

=
$$
\frac{|(-3\hat{i} - 4\hat{k}).(-\hat{i} - 7\hat{j} + 5\hat{k})|}{\sqrt{1 + 49 + 25}}
$$

=
$$
\frac{|3 - 20|}{5\sqrt{3}} = \frac{17}{5\sqrt{3}}
$$

9.[C] Equation of plane is given by $a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$ $-1(x + 1) - 7(y + 2) + 5(z + 1) = 0$ $x + 7y - 5z + 10 = 0$ The distance of $(1, 1, 1)$ from the plane = J \backslash $\overline{}$ l ſ + 49 + キノーコー $1 + 49 + 25$ $\frac{1+7-5+10}{\sqrt{1+49+25}} = \frac{13}{\sqrt{75}}$ 13

10.[A] P(3, 2, 6), $\vec{r} = (-3\mu + 1)\hat{i} + (\mu - 1)\hat{j} + (5\mu + 2)\hat{k}$ $\overrightarrow{PQ} = (-3\mu - 2)\hat{i} + (\mu - 3)\hat{j} + (5\mu - 4)\hat{k}$ PQ is parallel to the plane $x - 4y + 3z = 1$ \therefore (-3 μ – 2) – 4(μ – 3) + 3(5 μ – 4) = 0 $8u = 2$ \implies $\mu = 1/4$

11.[C] Equation of line $\frac{1}{1}$ $\frac{x-2}{1} = \frac{y+1}{1}$ $\frac{y+1}{1} = \frac{z-1}{1}$ $\frac{z-2}{z}$ = r ...(1) $x = r + 2$, $y = r - 1$, $z = r + 2$ line (1) meet the plane $2x + y + z = 9$ at point Q $2(r + 2) + r - 1 + r + 2 = 9$ $4r = 4$ $\Rightarrow r = 1$ coordinate of Q(3, 0, 3) $PQ = \sqrt{1+1+1} = \sqrt{3}$

12.[B]
$$
\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} = \hat{i}(-1) - \hat{j}(-2) + \hat{k}(-1)
$$

Plane is normal to vector $\hat{i} - 2\hat{j} + \hat{k}$ $1(X-1) - 2(Y-2) + 1(Z-3) = 0$ $X - 2Y + Z = 0$ $6 = \frac{6}{\sqrt{6}}$ $\frac{|d|}{\sqrt{ }} \Rightarrow |d| = 6$

13.[C] Plane passing through origin (0, 0, 0) and normal vector to plane is perpendicular to $3\hat{i} + 4\hat{j} + 2\hat{k}$,

 $4\hat{i} + 2\hat{j} + 3\hat{k}$ and $2\hat{i} + 3\hat{j} + 4\hat{k}$ i.e. normal vector to plane is $\hat{i} - 2\hat{j} + \hat{k}$ so equation to plane is $x - 2y + z = 0.$

14.[A]
$$
\frac{x-1}{1} = \frac{y+2}{2} = \frac{z-1}{-2} = \lambda \quad \left| \frac{|1-4-2-\alpha|}{3} = 5 \right|
$$

\nfoot $(1 + \lambda, -2 + 2\lambda, 1 - 2\lambda) \quad |\alpha + 5| = 15$
\n $(1 + \lambda) + 2(-2 + 2\lambda)$
\n $- 2 (1 - 2\lambda) = 10$
\n $1 + \lambda - 4 + 4\lambda - 2 + 4\lambda = 10$
\n $9\lambda = 15, \Rightarrow \lambda = 5/3$
\nfoot $= \left(\frac{8}{3}, \frac{4}{3}, -\frac{7}{3}\right)$

- **15.[A]** Equation of line $=\frac{\lambda-3}{\lambda}=\lambda$ $=\frac{y-}{x}$ $\frac{z-2}{1} = \frac{y-3}{4} = \frac{z-1}{1}$ $z - 5$ 4 $y - 3$ 1 $x - 2$ General points $\{\lambda + 2, 4\lambda + 3, \lambda + 5\}$ Intersection point with plane $5(\lambda + 2) - 4(4\lambda + 3) - (\lambda + 5) = 1$ $5\lambda + 10 - 16\lambda - 12 - \lambda - 5 = 1$ $-12\lambda - 8 = 0$ $\lambda = -$ 12 $\frac{8}{2} = -\frac{2}{3}$ 2 Point $\left[\frac{-2}{3}+2,-\frac{3}{3}+3,\frac{-2}{3}+5\right]$ $\overline{}$ $\overline{}$ $\left[-\frac{2}{3}+2,-\frac{8}{3}+3,\frac{-2}{3}+5\right]$ 3 $3, \frac{-2}{2}$ 3 $2,-\frac{8}{3}$ 3 2 $P\left[\frac{1}{3},\frac{1}{3},\frac{13}{3}\right]$ I 1 L Γ 3 $\frac{1}{3}$, $\frac{13}{3}$ 1 , 3 4 $T(2, 1, 4)$ $\left| \text{Dr's}(\lambda, 4\lambda + 2, \lambda + 1) \right|$ $\frac{1}{\text{S}(\lambda + 2, 4\lambda + 3, \lambda + 5)} \text{Dr's}(1, 4, 1)$ Now $\lambda + 4 (4\lambda + 2) + (\lambda + 1) = 0$ $\lambda + 16\lambda + 8 + \lambda + 1 = 0$ $18\lambda = -9$ $\Rightarrow \lambda = -\frac{1}{2}$ 1 Points $\left| \frac{-1}{2} + 2, -2 + 3, -\frac{1}{2} + 5 \right|$ J $\left(\frac{-1}{2}+2, -2+3, -\frac{1}{2}+5\right)$ l $\left(-\frac{1}{2}+2, -2+3, -\frac{1}{2}+5\right)$ 2 2, $-2+3$, $-\frac{1}{2}$ 2 $\left[\frac{1}{2}+2, -2+3, -\frac{1}{2}+5\right] = \left(\frac{3}{2}, 1, \frac{9}{2}\right)$ J $\left(\frac{3}{2}, 1, \frac{9}{5}\right)$ l ſ 2 $\frac{3}{2}$, 1, $\frac{9}{2}$ 3 Distance at $PS =$ 2 (1) (2) (1) (2) 2 9 3 $\binom{1}{1}^2 + \binom{13}{1}$ 3 1 2 3 3 4 I J $\left(\frac{13}{2}-\frac{9}{2}\right)$ l $\int_{0}^{2} + \left(\frac{13}{2} - \right)$ J $\left(\frac{1}{2}-1\right)$ l $\int_{0}^{2} + \left(\frac{1}{2} - \right)$ J $\left(\frac{4}{5}-\frac{3}{5}\right)$ l $\begin{pmatrix} 4 \\ -1 \end{pmatrix}$ $PS = \sqrt{\frac{1}{36} + \frac{1}{9} + \frac{1}{36}}$ 1 9 4 36 $\frac{1}{66} + \frac{4}{9} + \frac{1}{36} = \sqrt{\frac{1+16}{36}}$ $\frac{1+16+1}{36} = \sqrt{\frac{18}{36}}$ $\frac{18}{36} = \frac{1}{\sqrt{2}}$ 1
- **16.[A]** Equation of plane passing through intersecting of plane P_1 & P_2 is $P_1 + \lambda P_2 = 0$

$$
(1 + \lambda) x + (2 - \lambda) y + (3 + \lambda) z - 2 - 3\lambda = 0
$$

distance of plane from pt (3, 1, -1) is $\frac{2}{\sqrt{3}}$

$$
\frac{2}{\sqrt{3}} = \frac{|3 + 3\lambda + 2 - \lambda - 3 - \lambda - 2 - 3\lambda|}{\sqrt{(1 + \lambda)^2 + (2 - \lambda)^2 + (3 - \lambda)^2}}
$$

on solving $\lambda = -\frac{7}{2}$
so equation of plane is

$$
\left(1 - \frac{7}{2}\right) x + \left(2 + \frac{7}{2}\right) y + \left(3 - \frac{7}{2}\right) z - 2 + \frac{21}{2} = 0
$$

5x - 11y + z = 17

17.[B, C]

If these two lines are coplanar then shortest distance between them $= 0$

5 2 k 2 k 2 = 0 2 0 0 $k = 2$ or -2 $\frac{-1}{1} = \frac{y+1}{1}$ z $y + 1$ $x - 1$

OR

so lines are

and
$$
\frac{x-1}{2} = \frac{y+1}{-2} = \frac{z}{2}
$$

$$
\frac{x+1}{5} = \frac{y+1}{2} = \frac{z}{-2}
$$
 set (ii)

5 and $\frac{x+1}{x}$

2

the plane which contain these set of line should contain the points $(1, -1, 0)$ and $(-1, -1, 0)$ which is satisfied by all the four options and

 $\frac{+1}{1} = \frac{y+1}{1} =$

2

2 $y + 1$

 \downarrow J

2 z

2

 \downarrow $\left\{ \right.$ \mathbf{I}

set (i)

 $(2\hat{i} + 2\hat{j} + 2\hat{k}) \& (5\hat{i} + 2\hat{j} + 2\hat{k}) \text{ OR }$

 $(2\hat{i} - 2\hat{j} + 2\hat{k}) \& (5\hat{i} + 2\hat{j} - 2\hat{k})$ are perpendicular to normal of plane For first set option (C) is correct. For second set option (B) is correct. **18.[D]** Let point lies on given line is $(-2, -1, 0)$ Line \perp to plane and passing through (–2, –1, 0) is 1 $\frac{x+2}{1} = \frac{y+2}{1}$ $\frac{y+1}{1} = \frac{z}{1}$ $\frac{z}{z} = \lambda$ General point on above line is $A(\lambda - 2, \lambda - 1, \lambda)$ Now this point lies on plane so put point A in equation of plane so we get $\lambda = 2$ Point A (0, 1, 2) Let second point on line is $(0, -2, 3)$ Let line \perp to plane and passing through point $(0, -2, 3)$ is 1 $\frac{x}{1} = \frac{y + 1}{1}$ $\frac{y+2}{1} = \frac{z-1}{1}$ $\frac{z-3}{z} = \lambda$

General point on above line is $B(\lambda, \lambda - 2, \lambda + 3)$ Now this point lies on plane so we get $\lambda = 2/3$ So point B (2/3, –4/3, 11/3)

Clearly drs of line join foot of \perp i.e. A and B is $(2/3, -7/3, 5/3)$ or $(2, -7, 5)$

19. [B,D]
$$
\ell_1 = (3\hat{i} + \hat{j} + 4\hat{k}) + t(\hat{i} + 2\hat{j} + 2\hat{k})
$$

\n $\ell_2 = (3\hat{i} + 3\hat{j} + 2\hat{k}) + s(2\hat{i} + 2\hat{j} + \hat{k})$
\nDrs of line \perp to both lines (2, -3, 2)
\nSo line ℓ is $\frac{x}{2} = \frac{y}{-3} = \frac{z}{2}$
\nIntersection point of line ℓ and ℓ_1 is A (2, -3, 2)
\nGeneral point on ℓ_2 is B (2k + 3, 2k + 3, k + 2)
\nDistance between A and B = $\sqrt{17}$
\n $\sqrt{(2k+1)^2 + (2k+6)^2 + k^2} = \sqrt{17}$
\n $k = -2$ and $k = -\frac{10}{9}$
\nSo point if $k = -2$, is (-1, -1, 0)
\nif $k = -\frac{10}{9}$ is $(\frac{7}{9}, \frac{7}{9}, \frac{8}{9})$

20.[A,D]Direction ratios of L_1 are $(0, \alpha - 3, 2)$ and it passes through the point (5, 0, 0) and direction ratios of L_2 are (0, 1, α – 2) and it passes through the point $(\alpha, 0, 0)$ If $L_1 \& L_2$ are coplanar then

$$
\begin{vmatrix} 5-\alpha & 0 & 0 \\ 0 & \alpha-3 & 2 \\ 0 & 1 & \alpha-2 \end{vmatrix} = 0
$$

\n
$$
(5-\alpha) [(\alpha-3) (\alpha-2) - 2] = 0
$$

\n
$$
(5-\alpha) (\alpha^2 - 5\alpha + 4) = 0
$$

\n
$$
(5-\alpha) (\alpha-1) (\alpha-4) = 0
$$

\n
$$
\alpha = 1, 4, 5
$$

 So

21.[A] Any point on line L₁ $(2\lambda + 1, -\lambda, \lambda -3)$ Any point on line L₂ (μ + 4, μ –3, 2 μ –3) for point of intersection of $L_1 \& L_2$ $2\lambda + 1 = \mu + 4, -\lambda = \mu - 3, \lambda - 3 = 2\mu - 3$ so $\lambda = 2$, $\mu = 1$ so point of intersection is $(5, -2, -1)$ required plane is perpendicular to both given planes so $7a + b + 2c = 0$ …..(i) $3a + 5b - 6c = 0$ …..(ii) From (i) $&$ (ii) $35 - 3$ c $-42-6$ –b $-6 - 10$ $\frac{a}{\sqrt{a}} = \frac{-b}{\sqrt{a}} =$ 2 c 3 b –1 $\frac{a}{a} = \frac{b}{b} =$ So required equation of plane is $-1(x-5) + 3(y+2) + 2(z+1) = 0$ $- x + 5 + 3y + 6 + 2z + 2 = 0$ $x - 3y - 2z = 13$ so $a = 1$, $b = -3$, $c = -2$, $d = 13$