MATRICES

(KEY CONCEPTS & SOLVED EXAMPELS)

\blacksquare MATRICES \blacksquare

- *1.* Definition
- *2.* Order of a matrix
- *3.* Types of matrices
- *4.* Addition and subtraction of matrices
- *5.* Scalar multiplication of matrices
- *6.* Multiplication of matrices
- *7.* Transpose of a matrix
- *8.* Symmetric and skew-symmetric matrix
- *9.* Determinant of a matrix
- *10.*Adjoint of a matrix
- *11.*Inverse of a matrix

KEY CONCEPTS

1. Definition

A rectangular arrangement of numbers in rows and columns, is called a Matrix. This arrangement is enclosed by small () or big [] brackets. A matrix is represented by capital letters A, B, C etc. and its element are by small letters a, b, c, x, y etc.

2. Order of a Matrix

A matrix which has m rows and n columns is called a matrix of order $m \times n$.

A matrix A of order $m \times n$ is usually written in the following manner-

$$
A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots a_{1j} & \dots a_{1n} \\ a_{21} & a_{23} & a_{23} & \dots a_{2j} & \dots a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & a_{i3} & \dots a_{ij} & \dots a_{in} \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots a_{mj} & \dots a_{mn} \end{bmatrix}
$$
 or

$$
A = [a_{ij}]_{m \times n}
$$
 where $i = 1, 2, \dots, m$
 $i = 1, 2, \dots, n$

Here a_{ij} denotes the element of ith row and jth column.

3. Types of Matrices

3.1 Row matrix :

If in a Matrix, there is only one row, then it is called a Row Matrix.

Thus $A = [a_{ij}]_{m \times n}$ is a row matrix if $m = 1$.

3.2 Column Matrix :

If in a Matrix, there is only one column, then it is called a Column Matrix.

Thus $A = [a_{ij}]_{m \times n}$ is a Column Matrix if $n = 1$.

3.3 Square Matrix :

If number of rows and number of column in a Matrix are equal, then it is called a Square Matrix.

Thus $A = [a_{ij}]_{m \times n}$ is a Square Matrix if $m = n$

Note :

- (a) If $m \neq n$ then Matrix is called a Rectangular Matrix.
- (b) The elements of a Square Matrix A for which $i = j$ i.e. a_{11} , a_{22} , a_{33} , a_{nn} are called diagonal elements and the line joining these elements is called the principal diagonal or of leading diagonal of Matrix A.
- (c) **Trance of a Matrix :** The sum of diagonal elements of a square matrix . A is called the trance of Matrix A which is denoted by tr A.

$$
tr A = \sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + ... a_{nn}
$$

3.4 Singleton Matrix :

If in a Matrix there is only one element then it is called Singleton Matrix. Thus

 $A = [a_{ij}]_{m \times n}$ is a Singleton Matrix if $m = n = 1$.

3.5 Null or Zero Matrix :

If in a Matrix all the elements are zero then it is called a zero Matrix and it is generally denoted by O.

Thus $A = [a_{ii}]_{m \times n}$ is a zero matrix if $a_{ii} = 0$ for all i and j.

3.6 Diagonal Matrix :

If all elements except the principal diagonal in a **Square Matrix** are zero, it is called a Diagonal Matrix. Thus a Square Matrix

 $A = [a_{ii}]$ is a Diagonal Matrix if $a_{ii} = 0$, when $i \neq j$

Note :

- (a) No element of Principal Diagonal in diagonal Matrix is zero.
- (b) Number of zero in a diagonal matrix is given by $n^2 - n$ where n is a order of the Matrix.

3.7 Scalar Matrix :

If all the elements of the diagonal of a **diagonal matrix** are equal , it is called a scalar matrix. Thus a Square Matrix $A = [a_{ij}]$ is a Scalar Matrix is

 $a_{ij} =$ l ∤ ſ $=$ ≠ k i = j $0 \quad i \neq j$ where k is a constant.

3.8 Unit Matrix :

If all elements of principal diagonal in a **Diagonal Matrix** are 1, then it is called Unit Matrix. A unit Matrix of order n is denoted by I_n .

Thus a square Matrix

 $A = [a_{ij}]$ is a unit Matrix if

$$
a_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}
$$

Note :

Every unit Matrix is a Scalar Matrix.

3.9 Triangular Matrix :

A Square Matrix [aij] is said to be triangular matrix if each element above or below the principal diagonal is zero it is of two types-

- **(a) Upper Triangular Matrix :** A Square Matrix $[a_{ii}]$ is called the upper triangular Matrix, if $a_{ii} = 0$ when $i > j$.
- **(b) Lower Triangular Matrix :** A Square Matrix [aij] is called the lower Triangular Matrix, if

 $a_{ij} = 0$ when $i < j$

Note :

Minimum number of zero in a triangular matrix is

given by $\frac{n(n)}{2}$ $\frac{n(n-1)}{2}$ where n is order of Matrix.

3.10 Equal Matrix :

Two Matrix A and B are said to be equal Matrix if they are of same order and their corresponding elements are equal.

3.11 Singular Matrix :

Matrix A is said to be singular matrix if its determinant $|A| = 0$, otherwise non- singular matrix i.e.

If det $|A| = 0 \Rightarrow$ Singular

and det $|A| \neq 0 \Rightarrow$ non-singular

4. Addition and Subtraction of Matrices

If A $[a_{ij}]_{m \times n}$ and $[b_{ij}]_{m \times n}$ are two matrices of the same order then their sum $A + B$ is a matrix whose each element is the sum of corresponding element.

i.e.
$$
A + B = [a_{ij} + b_{ij}]_{m \times n}
$$

Similarly their subtraction $A - B$ is defined as

$$
A-B=[a_{ij}\!-b_{ij}]_{m\times n}
$$

Note :

Matrix addition and subtraction can be possible only when Matrices are of same order.

4.1 Properties of Matrices addition :

If A, B and C are Matrices of same order, then-

- (i) A + B = B + A (Commutative Law)
- (ii) $(A+B) + C = A + (B+C)$ (Associative Law)
- (iii) $A + O = O + A = A$, where O is zero matrix which is additive identity of the matrix.
- **(iv)** A + (A) = $0 = (-A) + A$ where $(-A)$ is obtained by changing the sign of every element of A which is additive inverse of the Matrix
- **(v)** J ⊱ Ì $+A = C +$ $+ B = A +$ $B + A = C + A$ $A + B = A + C$
 $\Rightarrow B = C$ (Cancellation Law)

(vi) tr $(A \pm B) = \text{tr}(A) \pm \text{tr}(B)$

5. Scalar Multiplication of Matrices

Let A = $[a_{ij}]_{m \times n}$ be a matrix and k be a number then the matrix which is obtained by multiplying every element of A by k is called scalar multiplication of A by k and it is denoted by

kA thus if $A = [a_{ij}]_{m \times n}$ then

$$
kA = Ak = [ka_{ij}]_{m \times n}
$$

5.1 Properties of Scalar Multiplication :

If A, B are Matrices of the same order and λ , μ are any two scalars then -

- (i) $\lambda(A + B) = \lambda A + \lambda B$
- (ii) $(\lambda + \mu) A = \lambda A + \mu A$
- (iii) $\lambda(\mu A) = (\lambda \mu) A = \mu(\lambda A)$
- (iv) $(-\lambda A) = -(\lambda A) = \lambda(-A)$
- (v) tr $(kA) = k$ tr (A)

6. Multiplication of Matrices

If A and B be any two matrices, then their product AB will be defined only when number of column in A is equal to the number of rows in B. If $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{n \times p}$ then their product $AB = C = [c_{ij}],$ will be matrix of order m \times p, where

$$
(AB)_{ij} = C_{ij} = \sum_{r=1}^{n} a_{ir} b_{rj}
$$

6.1 Properties of Matrix Multiplication :

If A, B and C are three matrices such that their product is defined , then

- (i) $AB \neq BA$ (Generally not commutative)
- (ii) $(AB) C = A (BC)$ (Associative Law)
- (iii) $IA = A = AI$

I is identity matrix for matrix multiplication

- (iv) $A (B + C) = AB + AC$ (Distributive Law)
- (v) If $AB = AC \implies B = C$

(Cancellation Law is not applicable)

(vi) If $AB = 0$. It does not mean that $A = 0$ or $B = 0$, again product of two non- zero matrix may be zero matrix.

(vii) $tr(AB) = tr(BA)$

Note :

- (i) The multiplication of two diagonal matrices is again a diagonal matrix.
- (ii) The multiplication of two triangular matrices is again a triangular matrix.
- (iii) The multiplication of two scalar matrices is also a scalar matrix.
- (iv) If A and B are two matrices of the same order, then
	- (a) $(A + B)^2 = A^2 + B^2 + AB + BA$
	- (b) $(A B)^2 = A^2 + B^2 AB BA$
	- (c) $(A B) (A + B) = A² B² + AB BA$
	- (d) $(A + B) (A B) = A² B² AB + BA$
	- (e) $A(-B) = (-A) B = -(AB)$

6.2 Positive Integral powers of a Matrix :

The positive integral powers of a matrix A are defined only when A is a square matrix. Also then

$$
A^2 = A.A \qquad A^3 = A.A.A = A^2A
$$

Also for any positive integers m,n

- (i) $A^m A^n$ $= A^{m + n}$
- (ii) $(A^m)^n = A^{mn} = (A^n)^m$

 $(iii) \mathbf{I}^n = \mathbf{I}, \mathbf{I}^m = \mathbf{I}$

(iv) $A^{\circ} = I_n$ where A is a square matrices of order n.

7. Transpose of a Matrix

The matrix obtained from a given matrix A by changing its rows into columns or columns into rows is called transpose of Matrix A and is denoted by A^T or A' .

From the definition it is obvious that

If order of A is $m \times n$, then order of A^T is $n \times m$.

7.1 Properties of Transpose :

(i) $(A^T)^T = A$ (ii) $(A \pm B)^{T} = A^{T} \pm B^{T}$ $(iii) (AB)^T = B^T A^T$ (iv) $(kA)^{T} = k(A)^{T}$ (v) $(A_1A_2A_3.....A_{n-1}A_n)^T$ $= A_n^T A_{n-1}^T ... A_3^T A_2^T A_1^T$ (vi) $I^T = I$ (vii) tr $(A) = tr(A^T)$

8. Symmetric & Skew-Symmetric Matrix

(a) Symmetric Matrix : A square matrix $A = [a_{ij}]$ is called symmetric matrix if $a_{ij} = a_{ji}$ for all i,j or $A^T = A$

Note :

- (i) Every unit matrix and square zero matrix are symmetric matrices.
- (ii) Maximum number of different element in a symmetric matrix is $\frac{m(n)}{2}$ $\frac{n(n+1)}{2}$.

(b) Skew - Symmetric Matrix : A square matrix $A = [a_{ii}]$ is called

skew - symmetric matrix if

$$
a_{ij} = -a_{ji} \text{ for all } i, j
$$

or $A^T = -A$

Note :

(i) All Principal diagonal elements of a skew symmetric matrix are always zero because for any diagonal element –

$$
a_{ii}=-\,a_{ii}\Longrightarrow a_{ii}=0
$$

- (ii) Trace of a skew symmetric matrix is always 0
- **8.1 Properties of Symmetric and skew- symmetric matrices :**
	- (i) If A is a square matrix, then $A + A^{T}$, AA^{T} , A^TA are symmetric matrices while $A - A^T$ is Skew-Symmetric Matrices.
	- **(ii)** If A is a Symmetric Matrix, then –A , KA, A^{T} , A^{n} , A^{-1} , $B^{T}AB$ are also symmetric matrices where $n \in N$, $K \in R$ and B is a square matrix of order that of A.
	- **(iii)** If A is a skew symmetric matrix, then-
		- (a) A^{2n} is a symmetric matrix for $n \in N$
		- (b) A^{2n+1} is a skew-symmetric matrices for $n \in N$
		- (c) kA is also skew-symmetric matrix where $k \in R$
		- (d) $B^T AB$ is also skew-symmetric matrix where B is a square matrix of order that of A
	- **(iv)** If A, B are two symmetric matrices, then-
		- (a) $A \pm B$, $AB + BA$ are also symmetric matrices.
		- (b) AB BA is a skew symmetric matrix.
		- (c) AB is a symmetric matrix when $AB = BA$.
	- **(v)** If A, B are two skew-symmetric matrices, then-
		- (a) $A \pm B$, $AB BA$ are skew-symmetric matrices.
		- (b) AB + BA is a symmetric matrix.
- **(vi)** If A is a skew symmetric matrix and C is a column matrix, then C^T AC is a zero matrix.
- **(vii)** Every square matrix A can uniquelly be expressed as sum of a symmetric and skew symmetric matrix i.e.

$$
A = \left[\frac{1}{2}(A + A^{T})\right] + \left[\frac{1}{2}(A - A^{T})\right]
$$

9. Determinant of a Matrix

its determinant, denoted by |A| or Det (A) is defined as

 $|A| =$ l $\overline{}$ 1 L \mathbf{r} \mathbf{r} L Γ 31 a_{32} a_{33} 21 μ_{22} μ_{23} 11 μ_{12} μ_{13} a_{21} a_{22} a_{33} a_{an}a a a_u a_u a

9.1 Properties of the Determinant of a matrix :

- (i) |A| exists \Leftrightarrow A is a square matrix
- (ii) $|AB| = |A||B|$
- $(iii) |A^T| = |A|$
- (iv) $|kA| = k^n |A|$, if A is a square matrix of order n.
- (v) If A and B are square matrices of same order then $|AB| = |BA|$
- (vi) If A is a skew symmetric matrix of odd order then $|A| = 0$

(vii)If A = diag (a_1, a_2, \ldots, a_n) then $|A| = a_1 a_2 \ldots a_n$

(viii) $|A|^n = |A^n|$, $n \in N$.

10. Adjoint of a Matrix

If every element of a square matrix A be replaced by its cofactor in |A|, then the transpose of the matrix so obtained is called the adjoint of matrix A and it is denoted by adj A

Thus if $A = [a_{ii}]$ be a square matrix and F^{ij} be the cofactor of a_{ij} in |A|, then

Adj $A = [F^{ij}]^T$

Hence if
$$
A = \begin{bmatrix} a_{11} & a_{12} & \dots a_{1n} \\ a_{21} & a_{22} & \dots a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots a_{nn} \end{bmatrix}
$$
, then
\n
$$
Adj A = \begin{bmatrix} F_{11} & F_{12} & \dots F_{1n} \\ F_{21} & F_{22} & \dots F_{2n} \\ \dots & \dots & \dots & \dots \\ F_{n1} & F_{n2} & \dots F_{nn} \end{bmatrix}^T
$$

10.1 Properties of adjoint matrix :

If A, B are square matrices of order n and I_n is corresponding unit matrix, then

(i) A (adj A) = $|A| I_n = (adj A) A$

(Thus A (adj A) is always a scalar matrix)

- (ii) $|adj A| = |A|^{n-1}$
- (iii) adj (adj A) = $|A|^{n-2}$ A
- (iv) |adj (adj A)| = $|A|^{(n-1)^2}$
- (v) adj $(A^T) = (adj A)^T$
- (vi) adj $(AB) = (adj B) (adj A)$
- (vii) adj $(A^m) = (ad \, \mathrm{i} \, A)^m$, $m \in N$
- (viii) adj (kA) = k^{n-1} (adj A), $k \in R$
- (ix) adj $(I_n) = I_n$
- (x) adj $0 = 0$
- (xi) A is symmetric \Rightarrow adj A is also symmetric
- (xii) A is diagonal \Rightarrow adj A is also diagonal
- (xiii) A is triangular \Rightarrow adj A is also triangular
- (xiv) A is singular \Rightarrow $|adj A| = 0$

11. Inverse of a Matrix

If A and B are two matrices such that

 $AB = I = BA$

then B is called the inverse of A and it is denoted by A^{-1} , thus

 $A^{-1} = B \Leftrightarrow AB = I = BA$

To find inverse matrix of a given matrix A we use following formula

$$
A^{-1} = \frac{adj A}{|A|}
$$

Thus A^{-1} exists $\Leftrightarrow |A| \neq 0$

Note :

- (i) Matrix A is called invertible if A^{-1} exists.
- (ii) Inverse of a matrix is unique.

11.1 Properties of Inverse Matrix :

Let A and B are two invertible matrices of the same order, then

- (i) $(A^T)^{-1} = (A^{-1})^T$ (ii) $(AB)^{-1} = B^{-1} A^{-1}$ $(iii) (A^k)⁻¹ = (A⁻¹)^k, k \in N$ (iv) adj $(A^{-1}) = (adj A)^{-1}$ (v) $(A^{-1})^{-1} = A$ $(vi) |A^{-1}| =$ | A | $\frac{1}{\cdot} = |A|^{-1}$
- (vii) If $A = diag(a_1, a_2, \ldots, a_n)$, then

 $A^{-1} = diag(a_1^{-1}, a_2^{-1}, \dots, a_n^{-1})$

- (viii) A is symmetric matrix \Rightarrow A⁻¹ is symmetric matrix.
- (ix) A is triangular matrix and $|A| \neq 0 \Rightarrow A^{-1}$ is a triangular matrix.
- (x) A is scalar matrix \Rightarrow A⁻¹ is scalar matrix.
- (xi) A is diagonal matrix \Rightarrow A⁻¹ is diagonal matrix.

(xii)
$$
AB = AC \Rightarrow B = C
$$
, iff $|A| \neq 0$.

SOLVED EXAMPLES

Ex.1 If $A =$ l J 1 $\overline{}$ Г 0 0 $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and a and b are arbitrary constants then $(aI + bA)^2$ = (A) $a^2I + abA$ (B) $a^2I + 2abA$ (C) $a^2I + b^2A$ (D) None of these **Sol.** Here $aI + bA =$ J \backslash $\overline{}$ l ſ 0 ^a $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$ J \backslash $\overline{}$ $\overline{\mathcal{L}}$ ſ 0 0 $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ \backslash $\overline{}$ l ſ 0 ^a ^a b \therefore (aI + bA)² = J \backslash $\overline{}$ l ſ $+0$ $0+$ +O ab+ 2 2 0+0 0+a $a^2 + 0$ ab + ba = l I J \backslash $\overline{}$ l ſ 2 2 0 ^a $\begin{vmatrix} a^2 & 2ab \\ 2 & a^2 \end{vmatrix} = a^2I + 2abA$ **Ans.[B] Ex.2** If $A =$ I J 1 L \mathbf{r} \mathbf{r} L Γ - 5 -Ξ Ξ. 4 -3 -1 2 1 3 $1 -3 2$ $, B =$ İ 」 1 I $\overline{}$ $\overline{}$ L Γ $1 - 2 1 2$ 2 1 1 1 1 4 1 0 and $C =$ J 1 \mathbf{r} \mathbf{r} \mathbf{r} L Γ -1 $-$ -1 -2 -5 -1 0 $3 -2 -1 -1$ 2 1 -1 -2 , then which of the following statement is true ? $(A) AB \ne AC$ $(B) AB = AC$ $(C) B \neq C \implies AB \neq AC$ (D) None of these **Sol.** Here $AB =$ I $\left[\begin{array}{cccc} 4 - 6 - 1 & 16 - 3 + 2 & 4 - 1 - 3 & -3 - 2 \end{array} \right]$ $\begin{bmatrix} 1 - 6 + 2 & 4 - 3 - 4 & 1 - 3 + 2 & -3 + 4 \end{bmatrix}$ $\begin{vmatrix} 2+2-3 & 8+1+6 & 2+1-3 & 1-6 \end{vmatrix}$ $=$ \vert $\begin{bmatrix} -3 & 15 & 0 & -5 \end{bmatrix}$ $\begin{bmatrix} -3 & -3 & 0 & 1 \end{bmatrix}$ $\begin{vmatrix} 1 & 15 & 0 & -5 \end{vmatrix}$ Also AC $=$ $\overline{}$ I I $\begin{bmatrix} 8 - 9 - 2 & 4 + 6 + 5 & -4 + 3 + 1 & -8 + 3 \end{bmatrix}$ $\begin{bmatrix} 2-9+4 & 1+6-10 & -1+3-2 & -2+3 \end{bmatrix}$ $\begin{vmatrix} 4+3-6 & 2-2+15 & -2-1+3 & -4-1 \end{vmatrix}$ $= |$ I $\begin{bmatrix} -3 & 15 & 0 & -5 \end{bmatrix}$ $\begin{bmatrix} -3 & -3 & 0 & 1 \end{bmatrix}$ $\begin{vmatrix} 1 & 15 & 0 & -5 \end{vmatrix} = AB;$ Hence $AC = AB$ is true **Ans. [B]**

Sol. Hence
\n
$$
f(\alpha) f(\beta) = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} \cos \alpha & \cos \beta - \sin \alpha \sin \beta & \cos \alpha \sin \beta + \sin \alpha \cos \beta \\ -\sin \alpha \cos \beta - \cos \alpha \sin \beta & -\sin \alpha \sin \beta + \cos \alpha \cos \beta \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} \cos(\alpha + \beta) & \sin(\alpha + \beta) \\ -\sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix}
$$
\nsimilarly
\n
$$
f(\alpha) f(\beta) f(\gamma) = \begin{bmatrix} \cos(\alpha + \beta + \gamma) & \sin(\alpha + \beta + \gamma) \\ -\sin \alpha & \cos \pi \end{bmatrix} \text{ as } \alpha + \beta + \gamma = \pi
$$
\n
$$
= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = -I_2. \text{ Ans.}[B]
$$
\n**Ex.6** If A = $\begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$; B = $\begin{bmatrix} 3 & 4 \\ 1 & 6 \end{bmatrix}$ then which of the following statements is true -
\n(A) AB = BA (B) A² = B
\n(C) (AB)^T = $\begin{bmatrix} 5 & 9 \\ 16 & 12 \end{bmatrix}$ (D) None of these
\n**Sol.** We have (AB)₁₁ = 1.3 + 2.1 = 5
\n(BA)₁₁ = 3.1 + 4.3 = 15
\n∴ AB ≠ BA Again (A²)₁₁ = 1.1 + 2.3
\n= 7 ≠ 3 = (B)₁₁
\nAlso (AB)^T = B^TA^T = $\begin{bmatrix} 3 & 1 \\ 4 & 6 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix}$
\n= $\begin{bmatrix} 3+$

 \therefore AB \neq BA may be not true Now $AB =$ J \backslash $\overline{}$ l ſ Ξ. 7 4 2 -1 J \backslash $\overline{}$ l ſ 7 2 4 1 \equiv l J \backslash $\overline{}$ l ſ $-28+28$ $-1+$ — *I* 2 — $28 + 28$ $-7 + 8$ $\begin{pmatrix} 8-7 & 2-2 \\ 28+28 & -7+8 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ \backslash I l ſ 0 1 1 0 $(AB)^{T} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ J \backslash $\overline{}$ ∖ ſ 0 1 1 0 = I **Ans.[D] Ex.8** If $A =$ I J 1 $\overline{\mathsf{L}}$ Γ 2 3 $\begin{bmatrix} 4 & 1 \\ 2 & 2 \end{bmatrix}$, then |A| is equal to -(A) 12 (B) –10 $(C) 10$ $(D) 5$ **Sol.** $|A| = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ $\begin{vmatrix} 4 & 1 \\ 1 & 1 \end{vmatrix} = (4 \times 3 - 1 \times 2)$ $= 12 - 2 = 10$ I l ſ $\left| \right|$, then $|A| = \begin{vmatrix} 1 & 1 \\ a_{21} & a_{22} \end{vmatrix} = (a_{11}a_{22} - a_{22})$ 1 l $=\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$, then $|A| = \begin{vmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{vmatrix} = (a_{11}a_{22} - a_{12}a_{21})$ $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$, then $|A| = \begin{vmatrix} a_{11} & a \\ a_{21} & a \end{vmatrix}$ if $A = \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$, then $A = \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} = (a_{11}a_{22} - a_{12}a_{21})$ 11 **4**12 21 a_{22} \therefore if A = $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$ **Ans.[C] Ex.9.** If $A =$ $\overline{}$ 1 L \mathbf{r} \mathbf{r} L Γ 2 6 7 5 0 4 1 2 3 then adj A is equal to - $\overline{}$ 24 4 8 24 4 8

$$
(A) \begin{bmatrix} -24 & 4 & 8 \\ 4 & 1 & 2 \\ 8 & 11 & -11 \end{bmatrix} (B) \begin{bmatrix} -24 & 4 & 8 \\ 4 & 1 & 11 \\ 30 & -2 & -10 \end{bmatrix}
$$

\n
$$
(C) \begin{bmatrix} -24 & 4 & 8 \\ -27 & 1 & 11 \\ 30 & -2 & -10 \end{bmatrix} (D) None of these
$$

\n**Sol.** Here $[A_{ij}] = \begin{bmatrix} 0 & 4 \\ 6 & 7 \\ -2 & 3 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} -5 & 4 \\ 2 & 7 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 2 & 6 \\ 2 & 6 \end{bmatrix}$
\n
$$
= \begin{bmatrix} -24 & -27 & 30 \\ 4 & 1 & -2 \\ 8 & 11 & -10 \end{bmatrix}
$$
Hence transposing
\n
$$
[A_{ij}] we get
$$

\n
$$
adj A = \begin{bmatrix} -24 & 4 & 8 \\ -27 & 1 & 11 \\ 30 & -2 & -10 \end{bmatrix}
$$
 Ans.[C]

J Ì

Ex.10 If $A =$ $\begin{bmatrix} 3 & 1 & 2 \end{bmatrix}$ 1 Г 2 3 1 1 2 3 then adj (adj A) = (A) $\overline{}$ 1 \mathbf{r} \mathbf{r} $\overline{}$ L Γ -34 10 -10 10 $-$ 54 18 36 36 54 18 18 36 54 (B) – I $\overline{}$ 1 I \mathbf{r} \mathbb{I} L Γ 54 18 36 36 54 18 18 36 54 (C) 18 I I $\overline{}$ ٦ I \mathbf{r} \mathbb{I} L Г 3 1 2 2 3 1 1 2 3 (D) None of these **Sol.** Hence we know adj (adj A) = $|A|^{n-2}$ A Now if $n = 3$ then adj (adj A) = |A| A $= | 2 \ 3 \ 1$ 3 1 2 1 2 3 A $= \{1(6-1) - 2(4-3) + 3(2-9)\}\;$ A $= (5 - 2 - 21) A = -18 A$ **Ans.**[B] **Ex.11** If $A =$ I 」 1 $\overline{}$ Γ 1 1 $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ then A⁻ⁿ is equal to-(A) l J 1 $\overline{}$ Γ ⁿ 1 $\begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 0 \\ -n & -1 \end{bmatrix}$ $\overline{}$ $\overline{}$ $-n-1$ 1 0 (C) J 1 l Γ ⁿ 1 $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ (D) None of these **Sol.** A = I 」 1 $\overline{}$ Γ 1 1 1 0 $A^{-1} = \frac{1}{1}$ 1 I J 1 l Γ 1 1 $\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$ 1 $\overline{\mathsf{L}}$ Γ 1 1 1 0 $A^{-2} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$ 1 l Γ 1 1 1 0 l J 1 $\overline{}$ Г 1 1 $\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$ $\overline{}$ $\overline{}$ -2 1 1 0 $A^{-n} = \begin{bmatrix} 1 & 0 \\ -n & 1 \end{bmatrix}$ 1 l Γ ⁿ 1 1 0 **Ans.[C] Ex.12** If A is idempotent and $A + B = I$, then which

of the following is true? (A) B is idempotent (B) $AB = 0$ (C) $BA = 0$ (D) All of these **Sol.** Here $A + B = I \implies B = I - A$ Now $B^2 = (I - A) (I - A)$ $= |^2 - Al - IA + A^2$ $= I - A - A + A^2$ $= I - A - A + A$ here $A^2 = A$ since A is idempotent $= I - A = B$ \therefore B is idempotent is true Again $AB = A (I - A) = Al - A^2 = A - A = 0$ Also $BA = (I - A) A = IA - A^2 = A - A = 0$ Hence all statements are true . **Ans.[D] Ex.13** If k I $\begin{bmatrix} 2 & 2 & -1 \end{bmatrix}$ 1 \mathbf{r} \mathbf{r} Γ Ξ. 2 -1 2 1 2 2 is an orthogonal matrix then k is equal to - (A) 1 (B) $1/2$ (C) 1/3 (D) None of these **Sol.** Here let $A = k$ I 」 1 L \mathbf{r} \mathbf{r} L Γ Ξ. Ξ Ξ. 2 2 -1 2 -1 2 1 2 2 \therefore A^T = k J 1 \mathbf{r} L L L Г π Ξ. 2 2 -1 2 -1 2 1 2 2 Since A is orthogonal \therefore AA^T = I \Rightarrow k² I 」 1 \mathbf{r} $\overline{}$ \mathbf{r} L Γ Ξ, 2 2 -1 2 -1 2 1 2 2 I J 1 \mathbf{r} $\overline{}$ \mathbf{r} L Γ Ξ, 2 2 -1 2 -1 2 1 2 2 $=$ k^2 l J 1 \mathbf{r} L L L Γ -2+4-2 4-2-2 4+4+ -2-2+4 4+1+4 4-2-+4+4 -2-2+4 -2+4- $2+4-2$ $4-2-2$ $4+4+1$ $2 - 2 + 4$ $4 + 1 + 4$ $4 - 2 - 2$ $1+4+4$ $-2-2+4$ $-2+4-2$ $=$ k^2 J 1 \mathbf{r} L L L Γ 0 0 9 0 9 0 9 0 0 $= 9k^2$ I \Rightarrow 9k² = 1 \Rightarrow k² = $\frac{1}{9}$ $\frac{1}{9}$ \Rightarrow k = $\pm \frac{1}{3}$ 1 **Ans.[C]**

Ex.14 If
$$
A = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}
$$
 and
\n $B = \begin{bmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{bmatrix}$, and $AB = 0$,
\nthen $\theta - \phi$ is equal to -
\n(A) 0
\n(B) even multiple of $(\pi/2)$
\n(C) odd multiple of π
\n**Sol.** Here
\n $AB = \begin{bmatrix} \cos^2 \theta \cos^2 \phi + \cos \theta \sin \theta \cos \phi \sin \phi \\ \cos \theta \sin \theta \cos^2 \phi + \sin^2 \theta \cos \phi \sin \phi \\ \cos^2 \theta \cos \phi \sin \phi + \cos \theta \sin \theta \sin^2 \phi \\ \cos \theta \sin \theta \cos \phi \sin \phi + \sin^2 \theta \sin^2 \phi \end{bmatrix}$
\n $= \begin{bmatrix} \cos \theta \cos \phi \cos(\theta - \phi) & \cos \theta \sin \phi \cos(\theta - \phi) \\ \sin \theta \cos \phi \cos(\theta - \phi) & \sin \theta \sin \phi \cos(\theta - \phi) \end{bmatrix}$
\n $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, if $\cos (\theta - \phi) = 0$

Now cos $(\theta - \phi) = 0$, $\theta - \phi$ is an odd multiple of $(\pi/2)$. **Ans.[C]**

Ex.15 If $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 1 $\overline{}$ Γ 0 1 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $J =$ l J 1 l Γ -1 0 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $B =$ l 」 1 $\overline{\mathsf{L}}$ Γ $-\sin\theta \cos\theta$ θ sin θ $\sin \theta$ cos $\begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & \sin\theta \end{bmatrix}$, then B equals -(A) $I \cos \theta + J \sin \theta$ (B) $I \cos \theta - J \sin \theta$ (C) I sin θ + J cos θ (D) – I cos θ + J sin θ **Sol.** Here $B = \begin{bmatrix} 2656 & 5 \text{m/s} \\ -\sin \theta & \cos \theta \end{bmatrix}$ 1 $\overline{\mathsf{L}}$ Γ $-\sin\theta \cos\theta$ θ sin θ $\sin \theta$ cos $\cos\theta-\sin$ $=\begin{bmatrix} \cos \theta & \cos \theta \\ 0 & \cos \theta \end{bmatrix}$ 1 $\overline{}$ Γ θ θ 0 cos $\begin{vmatrix} \cos \theta & 0 \\ 0 & \cos \theta \end{vmatrix}$ $\overline{}$ 1 $\overline{}$ Γ $-\sin\theta$ θ $\sin \theta = 0$ 0 sin $=$ cos θ I J 1 $\overline{\mathsf{L}}$ Γ 0 1 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ + sin $\theta \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ $\overline{}$ $\overline{\mathsf{L}}$ \mathbf{r} -1 0 0 1 $= I \cos \theta + J \sin \theta$ **Ans.**[A]

Ex.16 If $M(\alpha) =$ I J 1 L \mathbf{r} \mathbf{r} L Γ α cos α α – sm α 0 0 1 sin α cos α 0 $\cos \alpha$ $-\sin \alpha$ 0 $M(\beta) =$ 」 1 I \mathbb{I} \mathbb{I} L Г $-\sin\beta$ 0 $\cos\beta$ β $0 \sin \beta$ sin 0 cos 0 1 0 cos 0 sin then $[M(\alpha) M(\beta)]^{-1}$ is equals to -(A) $M(\beta) M(\alpha)$ (B) $M(-\alpha) M(-\beta)$ (C) $M(-\beta) M(-\alpha)$ (D) – $M(\beta) M(\alpha)$ **Sol.** $[M(\alpha) M(\beta)]^{-1} = M(\beta)^{-1} M(\alpha)^{-1}$ Now $M(\alpha)^{-1} =$ $\overline{}$ 1 I \mathbb{I} \mathbb{I} L Γ -smα cosα α sm α 0 0 1 $\sin\alpha$ cos α 0 cosα sinα 0 = l l $\overline{}$ 1 L \mathbf{r} L L Γ $-\alpha$) cost $-\alpha$ $-\alpha$) $-\sin(-\alpha)$ 0 0 1 $\sin (-\alpha) \cos(-\alpha) \quad 0$ $\cos(-\alpha)$ $-\sin(-\alpha)$ 0 $= M(-\alpha)$ $M(\beta)^{-1} =$ İ I $\overline{}$ 1 L \mathbf{r} \mathbf{r} L Γ β 0 $\cos\beta$ β 0 $-\sin \beta$ sin 0 cos 0 1 0 cos ß 0 — sin = l J 1 \mathbf{r} L Γ $-\sin(-\beta)$ 0 $\cos(-\beta)$ $-\beta$) 0 sin ($-\beta$ $\sin(-\beta)$ 0 $\cos(-\beta)$ 0 1 0 $\cos(-\beta)$ 0 $\sin(-\beta)$ $= M(-\beta)$ \therefore [M(α) M(β)]⁻¹ = M(- β) M(- α) **Ans.[C]**

