INDEFINITE

INTEGRATION

(KEY CONCEPTS + SOLVED EXAMPLES)

INDEFINITE INTEGRATION

1. Integration of a Function

2. Basic Theorems on Integration

3. Standard Integrals

4. Methods of Integration

5. Integrates of Different Expression

KEY CONCEPTS

1. Integration of a Function

Integration is a reverse process of differentiation. The **integral or primitive** of a function f(x) with respect to x is that function (x) whose derivative with respect to x is the given function $f(x)$. It is expressed symbolically as -

$$
\int f(x) dx = \phi(x)
$$

Thus

$$
\int f(x) dx = \phi(x) \Leftrightarrow \frac{d}{dx} [\phi(x)] = f(x)
$$

The process of finding the **integral** of a function is called Integration and the given function is called **Integrand**. Now, it is obvious that the operation of integration is inverse operation of differentiation. Hence integral of a function is also named as a series of the s

anti-derivative of that function.

Further we observe that-

$$
\begin{cases}\n\frac{d}{dx}(x^2) = 2x \\
\frac{d}{dx}(x^2 + 2) = 2x \\
\frac{d}{dx}(x^2 + k) = 2x\n\end{cases} \Rightarrow \int 2x \, dx = x^2 + \text{constant}
$$

So we always add a constant to the integral of function, which is called the **constant of Integration**. It is generally denoted by c. Due to presence of this constant such an integral is called an **Indefinite integral**.

2. Basic Theorems on Integration

If $f(x)$, $g(x)$ are two functions of a variable x and k is a constant, then-

(i)
$$
\int k f(x) dx = k \int f(x) dx
$$
.
\n(ii) $\int [f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx$
\n(iii) $d/dx(\int f(x) dx) = f(x)$
\n(iv) $\int \left(\frac{d}{dx} f(x)\right) dx = f(x)$

3. Standard Integrals

The following integrals are directly obtained from the derivatives of standard functions.

i.
$$
\int 0 \cdot dx = c
$$

ii. $\int 1 \cdot dx = x + c$

iii. $\int k \, dx = kx + c \, (k \in R)$

iv.
$$
\int x^n dx = \frac{x^{n+1}}{n+1} + c (n-1)
$$

v. $\int \frac{1}{x} dx = \log_e x + c$

vi. $\int e^x dx = e^x + c$ vii. $\int a^x dx = \frac{a^x}{\log_e a}$ a e x
 \rightarrow + c = a^x log_a e + c viii. $\int \sin x \, dx = -\cos x + c$ ix. $\int \cos x \, dx = \sin x + c$ x. $\int \tan x \, dx = \log \sec x + c = -\log \cos x + c$ xi. $\int \cot x \, dx = \log \sin x + c$ xii. $\int \sec x \, dx = \log(\sec x + \tan x) + c$ $=-\log(\sec x - \tan x)+c$ $=$ log tan $\left(\frac{\pi}{4} + \frac{\pi}{2}\right)$ I $\left(\frac{\pi}{4} + \frac{x}{4}\right)$ l $\begin{pmatrix} \pi \\ -1 \end{pmatrix}$ 2 x $\frac{\pi}{4} + \frac{\pi}{2}$ + c xiii. $\int \csc x \, dx = -\log(\csc x + \cot x) + c$ $=$ log (cosec x – cot x) + c = log tan $\left(\frac{\lambda}{2}\right)$ $\left(\frac{\mathbf{x}}{-}\right)$ l ſ 2 $\frac{x}{2}$ + c xiv. $\int \sec x \tan x \, dx = \sec x + c$ xv. $\int \csc x \cot x \, dx = -\csc x + c$ xvi. $\int \sec^2 x \, dx = \tan x + c$ xvii. $\int \csc^2 x \, dx = -\cot x + c$ xviii. $\int \sinh x \, dx = \cosh x + c$ xix. $\int \cosh x \, dx = \sinh x + c$ xx. $\int \operatorname{sech}^2 x \, dx = \tanh x + c$ xxi. $\int \csc h^2 x \, dx = -\coth x + c$ xxii. $\int \operatorname{sech} x \, \tanh x \, dx = - \operatorname{sech} x + c$ xxiii. $\int \csc h x \coth x = -\csc h x + c$ xxiv. $\int \frac{1}{x^2 + a^2}$ $\frac{1}{1+a^2} dx = \frac{1}{a}$ $\frac{1}{a}$ tan⁻¹ $\left(\frac{x}{a}\right)$ $\left(\frac{\mathbf{x}}{-}\right)$ l ſ a $\frac{x}{-}$ + c xxv. $\int \frac{1}{x^2-a^2}$ $\frac{1}{-a^2} dx = \frac{1}{2a}$ $\frac{1}{2a} \log \left(\frac{x-a}{x+a} \right)$ I $\left(\frac{x-a}{x}\right)$ l ſ $x + a$ $\frac{x-a}{x}$ + c xxvi. $\int \frac{1}{a^2 - x^2}$ $\frac{1}{-x^2} dx = \frac{1}{2a}$ $\frac{1}{2a} \log \left(\frac{x+a}{x-a} \right)$ I $\left(\frac{x+a}{x}\right)$ l $(x +$ x – a $\frac{x+a}{x}$ + c

xxvii.
$$
\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a} \right) + c
$$

\n
$$
= -\cos^{-1} \left(\frac{x}{a} \right) + c
$$

\nxxviii.
$$
\int \frac{1}{\sqrt{x^2 + a^2}} dx = \sinh^{-1} \left(\frac{x}{a} \right) + c
$$

\n
$$
= \log (x + \sqrt{x^2 + a^2}) + c
$$

\nxxi.
$$
\int \frac{1}{\sqrt{x^2 - a^2}} dx = \cosh^{-1} \left(\frac{x}{a} \right) + c
$$

\n
$$
= \log (x + \sqrt{x^2 - a^2}) + c
$$

\nxxx.
$$
\int \sqrt{a^2 - x^2} dx
$$

\n
$$
= \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \cdot \sin^{-1} \frac{x}{a} + c
$$

\nxxxi.
$$
\int \sqrt{x^2 + a^2} dx
$$

\n
$$
= \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \cdot \sinh^{-1} \frac{x}{a} + c
$$

\nxxxii.
$$
\int \sqrt{x^2 - a^2} dx
$$

\n
$$
= \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \cdot \cosh^{-1} \frac{x}{a} + c
$$

\nxxxiii.
$$
\int \frac{1}{x \sqrt{x^2 - a^2}} dx = \frac{1}{a} \sec^{-1} \frac{x}{a} + c
$$

\nxxxiv.
$$
\int e^{ax} \sin bx dx
$$

\n
$$
= \frac{e^{ax}}{a^2 + b^2} (\text{a } \sin bx - b \cos bx) + c
$$

\n
$$
= \frac{e^{ax}}{\sqrt{a^2 + b^2}} \sin \left\{ bx - \tan^{-1} \left(\frac{b}{a} \right) \right\} + c
$$

\nxxxv.
$$
\int e^{ax} \cos bx dx
$$

\n
$$
= \frac{e^{ax}}{a^2 + b^2} (\text{a } \cos bx + b \sin bx) + c
$$

\n
$$
= \frac{e
$$

When integration can not be reduced into some standard form then integration is performed using following methods-

- **(i) Integration by substitutions**
- **(ii) Integration by parts**
- **(iii) Integration of rational functions**

(iv) Integration of irrational functions

(v) Integration of trigonometric functions

4.1 INTEGRATION BY SUBSTITUTION:

Generally we apply this method in the following two cases.

(i) When Integrand is a function of function -

i.e. \int **f** $[\phi(x)] \phi'(x) dx$

Note:

In this method the integrand is broken into two factors so that one factor can be expressed in terms of the function whose differential coefficient is the second factor.

(ii) When integrand is the product of two factors such that one is the derivative of the other i.e.

 $I = \int f'(x) f(x) dx$.

In this case we put $f(x) = t$ and convert it into a standard integral.

(iii) Integral of a function of the form $f(ax + b)$.

$$
\int f(ax+b) \ dx = \frac{1}{a} \phi(ax+b)
$$

(iv) Standard form of Integrals:

(a)
$$
\int \frac{f'(x)}{f(x)} dx = \log [f(x)] + c
$$

(b)
$$
\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1} + c
$$

$$
(provided n \neq -1)
$$

(c)
$$
\int \frac{f'(x)}{\sqrt{f(x)}} dx = 2\sqrt{f(x)} + c
$$

(v) Integral of the form

$$
\int \frac{\mathrm{dx}}{a \sin x + b \cos x}
$$

putting $a = r \cos \theta$ and $b = r \sin \theta$. we get

$$
I = \int \frac{dx}{r \sin(x + \theta)} = \frac{1}{r} \int \csc(x + \theta) dx
$$

= $\frac{1}{r} \log \tan(x/2 + \theta/2) + c$
= $\frac{1}{\sqrt{a^2 + b^2}} \log \tan(x/2 + 1/2 \tan^{-1} b/a) + c$

(vi) Standard Substitutions : Following standard substitutions will be useful-

$$
\frac{1}{\sqrt{a^2 - x^2}}
$$
\n
$$
x = a \cos \theta
$$
\n(ii) $\sqrt{x^2 + a^2}$ or $x = a \tan \theta$ or $x = a \sinh \theta$ \n(iii) $\sqrt{x^2 - a^2}$ or $x = a \cot \theta$ or $x = a \sinh \theta$ \n(iiii) $\sqrt{x^2 - a^2}$ or $x = a \sec \theta$ or $x = a \cosh \theta$ \n(iv) $\sqrt{\frac{x}{a + x}}$ or $\sqrt{\frac{a + x}{x}}$ $x = a \tan^2 \theta$ \nor $\sqrt{x(a + x)}$ or $\frac{1}{\sqrt{x(a + x)}}$ \n(v) $\sqrt{\frac{x}{a - x}}$ or $\sqrt{\frac{a - x}{x}}$ \nor $\sqrt{x(a - x)}$ $x = a \sin^2 \theta$ \nor $\frac{1}{\sqrt{x(a - x)}}$ \n(vi) $\sqrt{\frac{x}{x - a}}$ or $x = a \sec^2 \theta$ \n
$$
\sqrt{\frac{x - a}{x}}
$$
\nor $\sqrt{x(x - a)}$ or $x = a \cos 2\theta$ \n(vii) $\sqrt{\frac{a - x}{a + x}}$ or $x = a \cos 2\theta$ \n
$$
\sqrt{\frac{a + x}{a - x}}
$$
\n(viii) $\sqrt{\frac{x - \alpha}{\beta - x}}$ or $x = \alpha \cos^2 \theta + \beta \sin^2 \theta$ \n
$$
\sqrt{(x - \alpha)(\beta - x)}
$$
\n
$$
(\beta > \alpha)
$$

4.2 INTEGRATION BY PARTS :

$$
4.2.1 \qquad \text{If } u \text{ and } v \text{ are two functions of } x, \text{ then}
$$

$$
\underbrace{\left(\int (u.v) dx = u \left(\int v dx\right) - \int \left(\frac{du}{dx}\right) \cdot \left(\int v dx\right) dx}_{= \text{first}} \right)}_{= \int [(derivative of first) \times (Integral of second)]}
$$
\n= *first* function × integral of the second function × 0 for the second function × 1 for the second function × 1 for the second function × 1 for the second function × 2 for the second function × 2 for the second function × 2 for the second function × 3 for the second function × 3 for the second function × 4 for the second function × 4 for the second function × 5 for the second function × 6 for the second function × 1 for the second function × 2 for the second function × 1 for the second function × 2 for the second function × 3 for the second function × 3 for the second function × 4 for the second function × 5 for the second function × 1 for the second function × 1 for the second function × 2 for the second function × 1 for the second function × 2 for the second function × 3 for the second function × 3 for the second function × 4 for the second function × 4 for the second function × 5 for the second function × 1 for the second function × 1 for the second function × 2 for the second function × 1 for the second function × 2 for the second function × 3 for the second function × 3 for the second function × 4 for the second function × 1 for the second function × 2 for the second function × 3 for the second function × 1 for the second function × 2 for the second function × 3 for the second function × 4 for the second function × 1 for the second function × 2 for the second function × 3 for the second function × 1 for the second condition × 2 for the second condition × 3 for the second condition × 4 for the second condition × 5 for the second condition × 1 for the second condition × 1 for the second condition × 1 for the second condition × 2 for the second condition × 1 for the second condition × 1 for the second condition × 1 for the second condition × 2 for the second condition × 1 for the second condition × 2 for the second condition × 1 for the third condition × 1 for the third

Note :

- **(i)** From the first letter of the words inverse circular, logarithmic, Algebraic, Trigonometric, Exponential functions, we get a word **ILATE**. Therefore first arrange the functions in the order according to letters of this word and then integrate by parts.
- **(ii)** For the integration of Logarithmic or Inverse trigonometric functions alone, take unity (1) as the second function.
- **4.2.2** If the integral is of the form $\int e^x [f(x) + f'(x)]dx$, then by breaking this integral into two integrals, integrate **one integral by parts and keep other integral as it is, By doing so, we get**-

4.2.3 If the integral is of the form $\int [xf'(x) + f(x)]dx$ then by breaking this integral into two integrals integrate one **integral by parts and keep other integral as it is, by doing so, we get**

ſ $[x f'(x) + f(x)]dx = x f(x) + c$

4.3 Integration of Rational functions:

4.3.1 When denominator can be factorized (using partial fraction) :

Let the integrand is of the form $g(x)$ $\frac{f(x)}{f(x)}$, where both f(x) and g(x) are polynomials. If degree of f(x) is greater than degree

of $g(x)$ then first divide f(x) by $g(x)$ till the degree of the remainder becomes less than the degree of $g(x)$. Let $Q(x)$ is the quotient and $R(x)$, the remainder then

$$
\frac{f(x)}{g(x)} = Q(x) + \frac{R(x)}{g(x)}
$$

Now in $R(x)/g(x)$, factorize $g(x)$ and then write partial fractions in the following manner-

(i) For every non repeated linear factor in the denominator, write

$$
\frac{1}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b}
$$

(ii) For repeated linear factors in the denominator, write-

$$
\frac{1}{(x-a)^3(x-b)} = \frac{A}{(x-a)} + \frac{B}{(x-a)^2} + \frac{C}{(x-a)^3} + \frac{D}{(x-b)}
$$

(iii) For every non repeated quadratic factor in the denominator, write

$$
\frac{1}{(ax^2 + bx + c)(x - d)} = \frac{Ax + B}{ax^2 + bx + c} + \frac{C}{x - d}
$$

Note :

(i) If integrand is of the form $\frac{1}{(x+a)(x+b)}$ 1 then use the following method for obtaining partial fractions-
 $\frac{1}{10}(x + b)$

Here
$$
\frac{1}{(x+a)(x+b)} = \frac{1}{(a-b)} \left[\frac{a-b}{(x+a)(x+b)} \right]
$$

$$
= \frac{1}{(a-b)} \left[\frac{(x+a)-(x+b)}{(x+a)(x+b)} \right]
$$

$$
= \frac{1}{(a-b)} \left[\frac{1}{x+b} - \frac{1}{x+a} \right]
$$

(ii) If integrand is of the form $\frac{x}{(x+a)(x+b)}$ x $\frac{x}{(x+b)}$ then

$$
\frac{x}{(x+a)(x+b)} = \frac{1}{b-a} \left[\frac{(b-a)x}{(x+a)(x+b)} \right]
$$

$$
= \frac{1}{b-a} \left[\frac{b(x+a)-a(x+b)}{(x+a)(x+b)} \right]
$$

$$
= \frac{1}{b-a} \left[\frac{b}{x+b} - \frac{a}{x+a} \right]
$$

4.3.2 When denominator can not be factorised:

In this case integral may be in the form

(i)
$$
\int \frac{dx}{ax^2 + bx + c}
$$
, (ii) $\int \frac{(px + q)}{ax^2 + bx + c} dx$

Method:

 (i) Here taking coefficient of x^2 common from denominator, write -

$$
x^{2} + (b/a) x + c/a = (x + b/2a)^{2} - \frac{b^{2} - 4ac}{4a^{2}}
$$

Now the integrand so obtained can be evaluated easily by using standard formulas.

l

(ii) Here suppose that $px + q = A$ [diff. coefficient of $(ax^2 + bx + c)$] + B

$$
= A (2ax + b) + B
$$
 ...(1)

Now comparing coefficient of x and constant terms.

we get
$$
A = p/2a
$$
, $B = q - (pb/2a)$

$$
\therefore I = P/2a \int \frac{2ax + b}{ax^2 + bx + c} dx
$$

$$
+ \left(q - \frac{pb}{2a} \right) \int \frac{dx}{ax^2 + bx}
$$

Now we can integrate it easily.

4.3.3 Integration of rational functions containing only even powers of x.

 $+ c$

To find integral of such functions, first we divide numerator and denominator by x^2 , then express numerator as $d(x)$ \pm 1/x) and denominator as a function of (x \pm 1/x).

4.4 Integration of irrational functions :

If anyone term in Nr or Dr is irrational then it is made rational by suitable substitution. Also if integral is of the form-

$$
\int \frac{dx}{\sqrt{ax^2 + bx + c}} , \int \sqrt{ax^2 + bx + c} dx
$$

then we integrate it by expressing

$$
ax^2 + bx + c = (x + \alpha)^2 + \beta
$$

Also for integrals of the form

$$
\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx, \int (px+q) \sqrt{ax^2+bx+c} dx.
$$

First we express $px + q$ in the form

$$
px + q = A \left\{ \frac{d}{dx} (ax^2 + bx + c) \right\} + B \text{ and then proceed as usual with standard form.}
$$

4.5 Integration of Trigonometric functions :

Here we shall study the methods for evaluation of following

I. (i)
$$
\int \frac{dx}{a + b \sin^2 x}
$$

(ii)
$$
\int \frac{dx}{a + b \cos^2 x}
$$

(iii)
$$
\int \frac{dx}{a \cos^2 x + b \sin x \cos x + c \sin^2 x}
$$

(iv)
$$
\int \frac{dx}{(a \sin x + b \cos x)^2}
$$

Method :

Divide numerator and Denominator by $\cos^2 x$ in all such type of integrals and then put tan $x = t$.

II. (i)
$$
\int \frac{dx}{a + b \cos x}
$$

\n(ii)
$$
\int \frac{dx}{a + b \sin x}
$$

\n(iii)
$$
\int \frac{dx}{a \cos x + b \sin x}
$$

\n(iv)
$$
\int \frac{dx}{a \sin x + b \cos x + c}
$$

Method :

In such types of integrals we use following formulae for sin x and cos x in terms of tan $(x/2)$.

$$
\sin x = \frac{2 \tan \left(\frac{x}{2}\right)}{1 + \tan^2 \left(\frac{x}{2}\right)}, \cos x = \frac{1 - \tan^2 \left(\frac{x}{2}\right)}{1 + \tan^2 \left(\frac{x}{2}\right)}
$$

and then take $tan(x/2) = t$ and integrate another method for evaluation of integral

(iii) put $a = r \cos \alpha$, $b = r \sin \alpha$, then

$$
I = \frac{1}{r} \int \frac{dx}{\sin(x + \alpha)}
$$

\n
$$
= \frac{1}{r} \int \csc(x + \alpha) dx
$$

\n
$$
= \frac{1}{r} \log \tan(x/2 + \alpha/2) + c
$$

\n
$$
= \frac{1}{\sqrt{a^2 + b^2}} \log \tan \left(\frac{x}{2} + \frac{1}{2} \tan^{-1} \frac{b}{a} \right) + c
$$

\nIII.
$$
\int \frac{p \sin x + q \cos x}{a \sin x + b \cos x} dx
$$

\n
$$
\int \frac{p \sin x}{a \sin x + b \cos x} dx
$$

\n
$$
\int \frac{q \cos x}{a \sin x + b \cos x} dx
$$

\nFor their integration, we first express Nr. as follows-
\nNr = A (Dr) + B (derivative of Dr.)

Then integral = $Ax + B \log (Dr) + C$

 5. Some Integrates of Different Expression of e^x

(i)
$$
\int \frac{ae^{x}}{b+ce^{x}} dx
$$
 [put $e^{x} = t$]

(ii)
$$
\int \frac{1}{1+e^x} dx
$$
 [Multiply] and divide
\nby e^{-x} and put $e^{-x}=t$]
\n(iii) $\int \frac{1}{1-e^x} dx$ [Multiply] and divide
\nby e^{-x} and put $e^{-x}=t$]
\n(iv) $\int \frac{e^x - e^{-x}}{e^x - e^{-x}} dx$ [Multiply] by and divide
\nby e^x]
\n(v) $\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$ [$\frac{f'(x)}{f(x)}$ form]
\n(vi) $\int \frac{e^x - e^{-x}}{e^x - 1} dx$ [Multiply] and divide by $e^{-x/2}$]
\n(vii) $\int (\frac{e^x - e^{-x}}{e^x - e^{-x}})^2 dx$ [Integrand = tanh² x]
\n(viii) $\int (\frac{e^{2x} + 1}{e^{2x} - 1})^2 dx$ [Integrand = 1/4 sech² x]
\n(x) $\int \frac{1}{(e^x + e^{-x})^2} dx$ [Integrand = 1/4 sech² x]
\n(x) $\int \frac{1}{(1+e^x)(1-e^{-x})} dx$ [Integrand = 1/4 cosech² x]
\n(xii) $\int \frac{1}{\sqrt{1-e^x}} dx$ [Multiply] and divide by $e^{-x/2}$]
\n(xiii) $\int \frac{1}{\sqrt{1-e^x}} dx$ [Multiply] and divide by $e^{-x/2}$]
\n(xiv) $\int \frac{1}{\sqrt{e^x - 1}} dx$ [Multiply] by adding divide by $e^{-x/2}$]
\n(xv) $\int \frac{1}{\sqrt{2e^x - 1}} dx$ [Multiply] by divide by $e^{-x/2}$]
\n(xvi) $\int \sqrt{1-e^x} dx$ [Integrand
\n= $(1-e^x)/\sqrt{1-e^x}$]
\n(xvii) $\int \sqrt{1+e^x} dx$ [Integrand
\n= $(e^x - 1)/\sqrt{e^x - 1}$]
\n(xviii) \int

P

(xix)
$$
\int \sqrt{\frac{e^x + a}{e^x - a}} dx
$$
 [Integrand]

 $= (e^x + a)/\sqrt{e^{2x} - a^2}$

P

SOLVED EXAMPLE

Ex.1 $\int \sin^2(x/2) dx$ equals-(A) $\frac{1}{2}$ $\frac{1}{2}$ (x + sin x) + c (B) $\frac{1}{2}$ $\frac{1}{2}$ (x + cos x) + c (C) $\frac{1}{2}$ $\frac{1}{2}$ (x – sin x) + c (D) None of these **Sol.** Here $I = \int \frac{1 - c_0}{2}$ $\frac{1-\cos x}{2}$ dx $=$ $\frac{1}{2}$ $\frac{1}{2}$ (x – sin x) + c **Ans.[C] Ex.2** $\int \cot^2 x \, dx$ equals - $(A) - \sec x + x + c$ (B) – cot $x - x + c$ $(C) - \sin x + x + c$ (D) None of these

Sol. \int (cosec² x – 1) dx $= -\cot x - x + c$ **Ans.** [B]

Ex.3 $\int \frac{5x +}{x}$ x $\frac{5x+7}{x}$ dx equals-(A) $5x + 7 \log x$ (B) $7x + 5 \log x +c$ (C) $5x + 7 \log x + c$ (D) None of these **Sol.** $\int \frac{5x+}{x}$ x $\frac{5x+7}{x}$ dx = $\int \left(\frac{5x}{x} + \frac{7}{x}\right)$ I $\left(\frac{5x}{2} + \frac{7}{2}\right)$ l $\left(\frac{5x}{x} + \frac{7}{x}\right)$ 7 x $\frac{5x}{-} + \frac{7}{-} dx$ $=\int 5 dx + \int \frac{7}{x}$ $\frac{7}{x}$ = 5 $\int 1 dx + 7 \int \frac{1}{x}$ 1 dx

 $= 5x + 7 \log x + c$ **Ans.**[C]

Ex.4
$$
\int \left(x - \frac{1}{x}\right)^3 dx, (x > 0) \text{ equals-}
$$

\n(A)
$$
\frac{x^3}{3} - \frac{3}{2}x^2 + 3 \log x + \frac{1}{2x^2} + c
$$

\n(B)
$$
\frac{x^4}{3} - \frac{3}{2}x^2 + 3 \log x + \frac{1}{2x^2} + c
$$

\n(C)
$$
\frac{x^4}{4} + 3 \log x + \frac{1}{2x^2} + c
$$

\n(D) None of these

Sol.
$$
\int \left(x - \frac{1}{x}\right)^3 dx
$$

\n
$$
= \int \left(x^3 - 3x^2 \cdot \frac{1}{x} + 3x \cdot \frac{1}{x^2} - \frac{1}{x^3}\right) E dx
$$

\n
$$
[\because (a - b)^3 = (a^3 - 3a^2b + 3ab^2 - b^3)]
$$

\n
$$
= \int \left(x^3 - 3x + \frac{3}{x} - \frac{1}{x^3}\right) dx
$$

\n
$$
= \int x^3 dx - 3 \int x dx + 3 \int \frac{1}{x} dx - \int \frac{1}{x^3} dx
$$

\n
$$
= \frac{x^{3+1}}{3+1} - 3 \cdot \frac{x^{1+1}}{1+1} + 3 \log x - \frac{x^{-3+1}}{-3+1} + c
$$

\n
$$
= \frac{x^4}{4} - \frac{3}{2}x^2 + 3 \log x + \frac{1}{2x^2} + c
$$

Ans.[B]

Ex.5 The value of
$$
\int \left(\frac{6}{1+x^2} + 10^x\right) dx
$$
 is
\n(A) 6 tan⁻¹ x + 10^x log_e 10 + c
\n(B) 6 tan⁻¹ x + $\frac{10^x}{log_e 10}$ + c
\n(C) 3 tan⁻¹ x + $\frac{10^x}{log_e 10}$ + c
\n(D) None of these
\n**Sol.** $\int \left(\frac{6}{1+x^2} + 10^x\right) dx$
\n= 6 $\int \frac{1}{1+x^2} dx + \int 10^x dx$
\n= 6 tan⁻¹ x + $\frac{10^x}{log_e 10}$ + C
\n**Ans.[B]**
\n**Ex.6** $\int (tan x + cot x)^2 dx$ is equal to-
\n(A) tan x - cot x + c (B) tan x + cotx + c
\n(C) cot x - tan x + c (D) None of these

Sol.
$$
I = \int (\tan^2 x + \cot^2 x + 2) dx
$$

$$
= \int (\sec^2 x + \csc^2 x) dx
$$

$$
= \tan x - \cot x + c
$$
 Ans. [A]

Ans.
$$
[A]
$$

 $\left(\frac{x+1}{x}\right)$

 $\frac{x+1}{x+1}$ + c

ſ $\, +$

 $\ensuremath{\mathbf{c}}$

Ex.7 $\int \sin 2x \sin 3x dx$ equals-(A) $\frac{1}{2}$ $\frac{1}{2}$ (sin x – sin 5 x) + c $\frac{1}{2}$ (sin x – sin 5x) + c

(B)
$$
\frac{1}{10}
$$
 (sin x - sin 5x) + c
\n(C) $\frac{1}{10}$ (5 sin x - sin 5x) + c
\n(D) None of these

Sol.
$$
I = \frac{1}{2} \int [\cos(-x) - \cos 5x] dx
$$

 $= \frac{1}{2} \left[\sin x - \frac{\sin 5x}{5} \right] + c$
 $= \frac{1}{10} [5 \sin x - \sin 5x] + c$ **Ans. [C]**

Ex.8
$$
\int \frac{x^2}{x^2 - 1} dx
$$
 equals
\n(A) $x + \log \sqrt{\frac{x - 1}{x + 1}} + c$ (B) $x + \log \sqrt{\frac{x + 1}{x - 1}} + c$

I $\left(\frac{x-1}{x}\right)$

ſ

Sol.

(C)
$$
x + \log \left(\frac{x-1}{x+1}\right) + c
$$
 (D) $x + \log \left(\frac{x+1}{x-1}\right) + c$
\n
$$
\int \frac{x^2 - 1 + 1}{x^2 - 1} dx
$$
\n
$$
= \int \left(1 + \frac{1}{x^2 - 1}\right) dx
$$
\n
$$
= x + \frac{1}{2} \log \left(\frac{x-1}{x+1}\right) + c
$$
\n
$$
= x + \log \sqrt{\frac{x-1}{x+1}} + c
$$
 Ans.[A]

Ex.9
$$
\int \sec^2 (ax + b) dx equals-(A) \tan (ax + b) + c \qquad (B) \frac{1}{2} \tan x + c
$$

(C)
$$
\frac{1}{a} \tan (ax + b) + c \qquad (D) \text{ None of these}
$$

Sol.
$$
\int \sec^2 (ax + b) dx, \text{ putting } ax + b = t,
$$

\n
$$
adx + 0 = dt \text{ or } dx = \frac{dt}{a}
$$

\n
$$
\therefore \int \sec^2 (ax + b) dx = \int \sec^2 t \frac{dt}{a}
$$

\n
$$
= \frac{1}{a} \int \sec^2 t dt
$$

\n
$$
= \frac{1}{a} \tan t + c
$$

\n
$$
= \frac{1}{a} \tan (ax + b) + c
$$

\n(Putting the value of t)
\n**Ans.[C]**

Ex.10
$$
\int \frac{1}{x \log x} dx \text{ is equal to-}
$$

(A) $\log (x \log x) + c$ (B) $\log (\log x + x) + c$

(C)
$$
\log x + c
$$
 (D) $\log (\log x) + c$

Sol.
$$
\int \frac{1}{x \log x} dx = \int \frac{1}{x} \cdot \frac{1}{\log x} dx
$$

put $\log x = t$, $\frac{1}{x} dx = dt$

$$
\therefore \int \frac{1}{x} \cdot \frac{1}{\log x} dx = \int \frac{1}{t} dt
$$

$$
\therefore \int \frac{1}{t} dt = \log t + c = \log (\log x) + c
$$

(putting the value of $t = \log x$)

Ans.[D]

Ex.11
$$
\int \sec^2 x \cos (\tan x) dx \text{ equals-}
$$

\n(A) sin (cos x) + c (B) sin (tan x) + c
\n(C) cosec (tan x) + c (D) None of these
\n**Sol.** Let tan x = t, then sec² x dx = dt
\n
$$
\therefore I = \int \cos t dt = \sin t + c
$$
\n
$$
= \sin (\tan x) + c
$$
\n**Ans.[B]**
\n**Ex.12**
$$
\int \tan^n x \sec^2 x \, dx \text{ equals-}
$$

(A)
$$
\frac{\tan^{n-1} x}{n-1} + c
$$
 (B)
$$
\frac{\tan^{n-1} x}{n+1} + c
$$

(C) tanⁿ⁺¹ x + c (D) None of these

Sol.

 $\int \tan^n x \sec^2 x dx$

putting tan $x = t$, $\sec^2 x dx = dt$ $\int \tan^n x \sec^2 x \, dx = \int t^n \, dt = \frac{\tan}{n+1}$ \tan $n+1$ $^+$ +1
 $\frac{+1}{1}$ + c

$$
= \frac{(\tan x)^{n+1}}{n+1} + c
$$

Ans.[B]

Ex.13 $\int \frac{\sin 2x}{1 + \cos^4 x}$ sin 2x $\frac{A}{4}$ dx is equal to-(A) $\cos^{-1}(\cos^2 x) + c$ (B) $\sin^{-1}(\cos^2 x) + c$ $(C) \cot^{-1} (\cos^2 x) + c$ (D) None of these **Sol.** Here differential coefficient of $\cos^2 x$ is $-\sin 2x$ Let $\cos^2 x = t$ \therefore 2 cos x (– sin x) dx = dt or $\sin 2x \, dx = -dt$ $\therefore \int \frac{\sin 2x}{1 + \cos^4 x}$ sin 2x $\frac{x}{4}$ dx = \int_{1+}^{-4} $\frac{-at}{1+t^2}$ dt $= \cot^{-1} t + c$ $= \cot^{-1} (\cos^2 x) + c$

Ans.[C]

Ex.14
$$
\int \frac{be^{x}}{\sqrt{a + be^{x}}} dx equals-
$$
\n(A) $\frac{2}{b} \sqrt{a + be^{x}} + c$ (B) $\frac{1}{b} \cdot \sqrt{a + be^{x}} + c$
\n(C) $2 \sqrt{a + be^{x}} + c$ (D) None of these
\n**Sol.**
$$
\int \frac{be^{x}}{\sqrt{a + be^{x}}} dx, putting a + be^{x} = t
$$
\n
$$
be^{x} dx = dt
$$
\n
$$
\therefore \int \frac{be^{x}}{\sqrt{a + be^{x}}} dx = \int \frac{dt}{\sqrt{t}} = 2\sqrt{t} + c
$$
\n
$$
= 2\sqrt{a + be^{x}} + c
$$
\n**Ans.[C]**

1 Ex.15
$$
\int \sqrt{\frac{1+\cos x}{1-\cos x}} dx \text{ equals}
$$
\n(A) $\log \cos \left(\frac{x}{2}\right) + c$ (B) $2\log \sin \left(\frac{x}{2}\right) + c$
\n(C) $2 \log \sec \left(\frac{x}{2}\right) + c$ (D) None of these
\n**Sol.**
$$
I = \int \sqrt{\frac{1+\cos x}{1-\cos x}} dx
$$
\n
$$
= \int \sqrt{\frac{2\cos^2(x/2)}{2\sin^2(x/2)}} dx
$$
\n
$$
= \int \cot \left(\frac{x}{2}\right) dx
$$
\n
$$
= 2 \log \sin \left(\frac{x}{2}\right) + c
$$
 Ans.[B]
\n**Ex.16**
$$
\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx \text{ equals}
$$
\n(A) $2 \sqrt{\sec x} + c$ (B) $2 \sqrt{\tan x} + c$
\n(C) $2/\sqrt{\tan x} + c$ (D) $2/\sqrt{\sec x} + c$
\n**Sol.**
$$
I = \int \frac{\sqrt{\tan x}}{\tan x} \sec^2 x dx
$$
\n
$$
= \int \frac{\sec^2 x}{\sqrt{\tan x}} dx = 2 \sqrt{\tan x} + c
$$
 Ans.

[B]

Ex.17 $\int \sin^5 x \cdot \cos^3 x \, dx$ is equal to-

(A)
$$
\frac{\sin^6 x}{6} - \frac{\sin^8 x}{8} + c
$$
 (B)
$$
\frac{\cos^6 x}{6} - \frac{\cos^8 x}{8} + c
$$

(C)
$$
\frac{\cos^6 x}{6} - \frac{\sin^8 x}{8} + c
$$
 (D) None of these

Sol.
$$
\int \sin^5 x \cdot \cos^3 x \, dx
$$

\nAssumed that $\sin x = t$
\n $\therefore \cos x \, dx = dt$
\n $= \int t^5 (1 - t^2) \, dt = \int (t^5 - t^7) \, dt$
\n $= \frac{t^6}{6} - \frac{t^8}{8} + c$

$$
= \frac{\sin^6 x}{6} - \frac{\sin^8 x}{8} + c
$$

Ans.[A]

Ex.18 $\int \frac{x}{1+x^6}$ 2 $1 + x$ $\frac{x}{f}$ dx is equal to-(A) $\tan^{-1}x^3 + c$ (B) $\tan^{-1}x^2 + c$

 $(C) \frac{1}{3}$ $\frac{1}{2}$ tan⁻¹x³ + c (D) 3 tan⁻¹x³ + c **Sol.** Put $x^3 = t \Rightarrow x^2 dx =$ 3 $\frac{1}{1}$ dt \therefore I

$$
= \frac{1}{3} \int \frac{dt}{1+t^2} = \frac{1}{3} \tan^{-1} x^3 + c
$$

[C]
\n
$$
\int \sqrt{\frac{1+x}{1-x}} dx equals
$$
\n(A) sin⁻¹ x + $\sqrt{1-x^2}$ + c
\n(B) sin⁻¹ x + $\sqrt{x^2 - 1}$ + c

Ex.19

(c)
$$
\sin^{-1} x - \sqrt{1 - x^2} + c
$$

\n(d) $\sin^{-1} x - \sqrt{x^2 - 1} + c$
\n**Sol**
\n
$$
I = \int \sqrt{\frac{1 + x}{1 - x}} dx
$$
\n
$$
= \int \frac{dx}{\sqrt{1 - x^2}} - \frac{1}{2} \int \frac{-2x dx}{\sqrt{1 - x^2}}
$$
\n
$$
= \sin^{-1} x - \sqrt{1 - x^2} + c
$$
\n**Ans.**

Ex.20 The primitive of log x will be-

e

(A) x log (e + x) + c (B) x log
$$
\left(\frac{e}{x}\right)
$$
 + c
(C) x log $\left(\frac{x}{e}\right)$ + c (D) x log (ex) + c

Sol.
$$
\int \log x \, dx = \int \log x.1 dx
$$

[Integrating by parts, taking log x as first part and 1 as second part]

$$
= (\log x).x - \int \left\{ \frac{d(\log x)}{dx} \right\} . x dx
$$

$$
= x \log x - \int \frac{1}{x} x dx = (x \log x - x) + c
$$

$$
= x (\log x - 1) + c = \log \left(\frac{x}{e}\right) + c
$$

Ans. [C]

Ex.21
$$
\int x \tan^{-1} x \text{ is equal to-}
$$

\n(A) $\frac{1}{2} (x^2 + 1) \tan^{-1} x - x + c$
\n(B) $\frac{1}{2} (x^2 + 1) \tan^{-1} x + x + c$
\n(C) $\frac{1}{2} (x^2 + 1) \tan^{-1} x - \frac{1}{2} x + c$
\n(D) $\frac{1}{2} (x^2 - 1) \tan^{-1} x - \frac{1}{2} x + c$

Ans.

Sol. Integrating by parts taking x as second part
\n
$$
I = \frac{x^2}{2} \tan^{-1} x - \int \frac{1}{1+x^2} \cdot \frac{x^2}{2} dx
$$
\n
$$
= \frac{1}{2} x^2 \tan^{-1} x - \frac{1}{2} \left(1 - \frac{1}{1-x^2} \right) dx
$$
\n
$$
= \frac{1}{2} x^2 \tan^{-1} x - \frac{1}{2} x + \frac{1}{2} \tan^{-1} x + c
$$
\n
$$
= \frac{1}{2} (x^2 + 1) \tan^{-1} x - \frac{1}{2} x + c
$$
 Ans. [C]

Ex.22
$$
\int \sin (\log x) dx
$$
 equals
\n(A) $\frac{x}{\sqrt{2}} \sin (\log x + \frac{\pi}{8}) + c$
\n(B) $\frac{x}{\sqrt{2}} \sin (\log x - \frac{\pi}{4}) + c$
\n(C) $\frac{x}{\sqrt{2}} \cos (\log x - \frac{\pi}{4}) + c$
\n(D) None of these
\n**Sol.** $\int \sin (\log x) dx$, assumed that $x = e^t$
\n $\therefore dx = e^t dt$
\n $= \int \sin t \cdot e^t dt$
\n $= \frac{e^t}{\sqrt{1+1}} \sin(t - \tan^{-1}1) + c$
\n $\Rightarrow \int \sin (\log x) dx$

$$
= \frac{x}{\sqrt{2}} \sin (\log x - \frac{\pi}{4}) + c
$$

[B]

Ex.23
$$
\int \frac{xe^{x}}{(x+1)^{2}} dx
$$
 is equal to-
\n(A) $\frac{e^{x}}{(x+1)^{2}} + c$ (B) $\frac{e^{x}}{x+1} + c$
\n(C) $\frac{e^{x}}{(x+1)^{2}} + c$ (D) None of these
\n**Sol.** $I = \int e^{x} \left[\frac{(x+1)-1}{(x+1)^{2}} \right] dx$
\n $= \int e^{x} \left(\frac{1}{x+1} + \frac{-1}{(x+1)^{2}} \right) dx$
\n $= e^{x} f(x) + c$
\n $= \frac{e^{x}}{x+1} + c$ **Ans. [B]**

Ex. 24 $\int x^3 (\log x)^2 dx$ equals-

(A)
$$
\frac{1}{32}x^4 [8 (\log x)^2 - 4 \log x + 1] + c
$$

\n(B) $\frac{1}{32}x^4 [8 (\log x)^2 - 4 \log x - 1] + c$
\n(C) $\frac{1}{32}x^4 [8 (\log x)^2 + 4 \log x + 1] + c$

(D) None of these

Sol. Integrating by parts taking x^3 as second part

$$
I = \frac{1}{4} x^4 (\log x)^2 - \frac{1}{2} \int x^3 \log x \, dx
$$

= $\frac{1}{4} x^4 (\log x)^2 - \frac{1}{2} \left(\frac{1}{4} x^4 \log x - \frac{1}{16} x^4 \right) + c$
= $\frac{1}{32} x^4 [8 (\log x)^2 - 4 \log x + 1] + c$

Ans. [A]

Ex.25 The value of $\int x \sec x \tan x \, dx$ is-

(A) x sec $x + log (sec x + tan x) + c$ (B) x sec $x - log (sec x - tan x) + c$ (C) x sec $x + \log$ (sec $x - \tan x$) + c (D) None of the above

$$
\int x.(sec x \tan x) dx
$$

= (x. sec x) - $\int (1 sec x) dx$
(Integrating by parts, taking x as first
function)
= x sec x - log (sec x + tan x) + c
= x sec x - log $\left\{ (sec x + tan x) \frac{sec x - tan x}{sec x - tan x} \right\}$ + c
= x sec x - log $\left(\frac{sec^2 x - tan^2 x}{sec x - tan x} \right)$ + c
= x sec x + log (sec x - tan x) + c
Ans.

[C]

Ans.

Sol.

Ex.26
$$
\int \frac{x + \sin x}{1 + \cos x} dx
$$
 equals
\n(A) $\frac{x}{2} \tan \left(\frac{x}{2}\right) + c$ (B) $\frac{x}{2} \tan x + c$
\n(C) $x \tan \left(\frac{x}{2}\right) + c$ (D) $x \tan x + c$

Sol.
$$
I = \int \frac{x + 2\sin(x/2)\cos(x/2)}{2\cos^2(x/2)} dx
$$

= $\frac{1}{2} \int x \sec^2(x/2) dx + \int \tan(x/2) dx$
= $x \tan(x/2) - \int \tan(x/2) dx + \int \tan(x/2) dx$
= $x \tan(\frac{x}{2}) + c$. Ans.[C]

Ex.27
$$
\int e^x \frac{x-1}{(x+1)^3} dx
$$
 equals-

(A)
$$
-\frac{e^x}{x+1} + c
$$
 (B) $\frac{e^x}{x+1} + c$

(C)
$$
\frac{e^x}{(x+1)^2} + c
$$
 (D) $-\frac{e^x}{(x+1)^2} + c$

Sol.
$$
I = \int e^x \left[\frac{x+1-2}{(x+1)^3} \right] dx
$$

 Γ

$$
= \int e^x \left(\frac{1}{(x+1)^2} - \frac{2}{(x+1)^3} \right) dx
$$

Thus the given integral is of the form

$$
= \int e^x \{f(x) + f'(x)\} dx
$$

$$
\therefore I = e^x f(x) = \frac{e^x}{(x+1)^2} + c
$$

Ans.[C]

Ex. 28
$$
\int \sec^3\theta d\theta
$$
 is equal to-
\n(A) $\frac{1}{2} [\tan\theta \sec\theta + \log(\tan\theta + \sec\theta)] + c$
\n(B) $\frac{1}{2} \tan \theta \sec \theta + \log(\tan\theta + \sec\theta) + c$
\n(C) $\frac{1}{2} [\tan \theta \sec \theta - \log(\tan\theta + \sec\theta)] + c$
\n(D) None of these
\n**Sol.** $I = \int \sec \cdot \sec^2\theta \cdot d\theta$
\n $= \int \sqrt{\tan^2 \theta + 1} \sec^2 \theta d\theta$
\n $= \int \sqrt{t^2 + 1} \ dt$, where $t = \tan \theta$
\n $= \frac{t}{2} \sqrt{t^2 + 1} + \frac{1}{2} \log(t + \sqrt{t^2 + 1}) + c$

 $\frac{1}{\epsilon}$ [tan θ sec θ + log (tan θ + sec θ)] + c

$$
Ans. [A]
$$

Ans.

Ex.29
$$
\int \frac{\cos x + x \sin x}{x(x + \cos x)} dx \text{ is equal to-}
$$

\n(A) log {x (x + cos x)} + c
\n(B) log $\left(\frac{x}{x + \cos x}\right)$ + c
\n(C) log $\left(\frac{x + \cos x}{x + \cos x}\right)$ + c
\n(D) None of these
\n**Sol.**
$$
I = \int \frac{(x + \cos x) - x + x \sin x}{x(x + \cos x)} dx
$$

$$
= \int \frac{1}{x} dx - \int \frac{1 - \sin x}{x + \cos x} dx
$$

$$
= \log x - \log (x + \cos x) + c
$$

$$
= \log \left(\frac{x}{x + \cos x}\right) + c
$$

[B]

 $=\frac{1}{2}$

Ex.30 $\int \sqrt{\sec x - 1} dx$ is equal to-

(A)
$$
2 \sin^{-1}(\sqrt{2} \cos x/2) + c
$$

\n(B) $-2 \sinh^{-1}(\sqrt{2} \cos x/2) + c$
\n(C) $-2 \cosh^{-1}(\sqrt{2} \cos x/2) + c$
\n(D) None of these
\n**Sol.** $I = \int \sqrt{\frac{1 - \cos x}{\cos x}} dx$
\n $= \int \frac{\sqrt{2} \sin x/2}{\sqrt{2 \cos^2 x/2 - 1}} dx$
\n $= -2 \int \frac{dt}{\sqrt{t^2 - 1}} \text{ where } t = \sqrt{2} \cos x/2$
\n $= -2 \cosh^{-1} t + c$
\n $= -2 \cosh^{-1} t + (\sqrt{2} \cos x/2) + c$
\n[**C**]
\n**Ex.31** $\int \frac{x^2 + 1}{(x - 1)(x - 2)} dx \text{ equals-}\n(A) $\log \left[\frac{(x - 2)^5}{(x - 1)^2} \right] + c$
\n(B) $x + \log \left[\frac{(x - 2)^5}{(x - 1)^2} \right] + c$$

(C)
$$
x + \log \left[\frac{(x-1)^5}{(x-2)^5}\right] + c
$$

(D) None of these

Sol. Here since the highest powers of x in Num^r and Den^r are equal and coefficients of x^2 are also equal, therefore

$$
\frac{x^2+1}{(x-1)(x-2)} \equiv 1 + \frac{A}{x-1} + \frac{B}{x-2}
$$

On solving we get $A = -2$, $B = 5$

Thus
$$
\frac{x^2 + 1}{(x - 1)(x - 2)} \equiv 1 - \frac{2}{x - 1} + \frac{5}{x - 2}
$$

The above method is used to obtain the value of constant corresponding to non repeated linear factor in the Den^r.

Now I =
$$
\left(1 - \frac{2}{x-1} + \frac{5}{x-2}\right)dx
$$

= x - 2 log (x - 1) + 5 log (x - 2) + c

$$
= x + \log \left[\frac{(x-2)^5}{(x-1)^2} \right] + c
$$

Ex.32 The value of
$$
\int \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}
$$
 is-
\n(A) $\frac{1}{b^2 - a^2} \left[b \tan^{-1} \frac{x}{b} - a \tan^{-1} \frac{x}{a} \right] + c$
\n(B) $\frac{1}{b^2 - a^2} \left[a \tan^{-1} \frac{x}{b} - b \tan^{-1} \frac{x}{a} \right] + c$
\n(C) $\frac{1}{b^2 - a^2} \left[b \tan^{-1} \frac{x}{b} + a \tan^{-1} \frac{x}{a} \right] + c$

(D) None of these

Sol. Putting $x^2 = y$ in integrand, we obtain

$$
\frac{y}{(y+a^2)(y+b^2)} = \frac{1}{b^2-a^2} \left[\frac{b^2}{y+b^2} - \frac{a^2}{y+a^2} \right]
$$

:. $I = \frac{1}{b^2-a^2} \cdot \left[\int \frac{b^2}{x^2+b^2} dx - \int \frac{a^2}{x^2+a^2} dx \right]$

$$
= \frac{1}{b^2-a^2} \left[b \tan^{-1} \frac{x}{b} - a \tan^{-1} \frac{x}{a} \right] + c
$$

Ans.[A]

Ex.33
$$
\int \frac{dx}{3x^2 + 2x + 1}
$$
 equals
\n(A) $\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{3x + 1}{\sqrt{2}} \right) + c$
\n(B) $\frac{1}{\sqrt{2}} \sin^{-1} \left(\frac{3x + 1}{\sqrt{2}} \right) + c$
\n(C) $\frac{1}{\sqrt{2}} \cot^{-1} \left(\frac{3x + 1}{\sqrt{2}} \right) + c$

(D) None of these

Sol.
$$
I = \frac{1}{3} \frac{dx}{x^2 + \frac{2}{3}x + \frac{1}{3}}
$$

$$
= \frac{1}{3} \int \frac{dx}{\left(x + \frac{1}{3}\right)^2 + \frac{2}{9}}
$$

$$
= \frac{1}{3} \times \frac{3}{\sqrt{2}} \tan^{-1} + \left(\frac{x + \left(\frac{1}{3}\right)}{\sqrt{2}/3}\right)c
$$

$$
= \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{3x + 1}{\sqrt{2}}\right) + c
$$
Ans.[A]

Ex.34 $\int \sqrt{1+x-2x^2} dx$ equals-

(A)
$$
\frac{1}{8}(4x-1)\sqrt{1+x-2x^2} + \frac{9\sqrt{2}}{32}\sin^{-1}\left(\frac{4x-1}{3}\right) + c
$$

\n(B) $\frac{1}{8}(4x+1)\sqrt{1+x-2x^2} - \frac{9\sqrt{2}}{32}\sin^{-1}\left(\frac{4x-1}{3}\right) + c$
\n(C) $\frac{1}{8}(4x-1)\sqrt{1+x-2x^2} + \frac{9\sqrt{2}}{32}\cos^{-1}\left(\frac{4x-1}{3}\right) + c$

(D) None of these

Sol.
$$
I = \sqrt{2} \int \sqrt{\frac{1}{2} - \left(x^2 - \frac{x}{2}\right)} dx
$$

$$
= \sqrt{2} \int \sqrt{\left\{\frac{9}{16} - \left(x - \frac{1}{4}\right)^2\right\}} dx
$$

$$
= \sqrt{2} \left[\frac{1}{2}\left(x - \frac{1}{4}\right) \sqrt{\left\{\frac{9}{16} - \left(x - \frac{1}{4}\right)^2\right\}} + \frac{9}{32} \sin^{-1} \left\{\frac{4}{3}\left(x - \frac{1}{4}\right)\right\}\right] + c
$$

$$
= \frac{1}{8} (4x - 1) \sqrt{1 + x - 2x^2} + \frac{9\sqrt{2}}{32} \sin^{-1} \left(\frac{4x - 1}{3}\right) + c
$$

Ans. [A]

Ex.35
$$
\int \frac{dx}{\sqrt{3-5x-x^2}} = \text{equals-}
$$

\n(A) $\sin^{-1} \left(\frac{2x+5}{\sqrt{37}} \right) + c$
\n(B) $\cos^{-1} \left(\frac{2x+5}{\sqrt{37}} \right) + c$
\n(C) $\sin^{-1} (2x+5) + c$
\n(D) None of these

 \mathbf{a}

Sol.
$$
I = \int \frac{dx}{\sqrt{\frac{37}{4} - (x + \frac{5}{2})^2}} = \sin^{-1} \left(\frac{x + 5/2}{\sqrt{37}/2} \right) + c
$$

\n
$$
= \sin^{-1} \left(\frac{2x + 5}{\sqrt{37}} \right) + c
$$

\n**4 Ex.36**
$$
\int \sqrt{e^{2x} - 1} dx \text{ is equal to-}
$$

\n(A)
$$
\sqrt{e^{2x} - 1} + \sec^{-1}e^{2x} + c
$$

\n(B)
$$
\sqrt{e^{2x} - 1} - \sec^{-1}e^{2x} + c
$$

\n(C)
$$
\sqrt{e^{2x} - 1} - \sec^{-1}e^{2x} + c
$$

\n(D) None of these
\n**Sol.**
$$
\int \frac{e^{2x} - 1}{\sqrt{e^{2x} - 1}} dx
$$

\n
$$
= \frac{1}{2} \int \frac{2e^{2x}}{\sqrt{e^{2x} - 1}} dx - \int \frac{e^x}{e^x \sqrt{e^{2x} - 1}} dx
$$

\n
$$
= \sqrt{e^{2x} - 1} - \sec^{-1}e^x + c
$$

\n**Ans.[C]**
\n**Ex.37**
$$
\int \sqrt{\frac{e^x + a}{e^x - a}} dx \text{ is equal to-}
$$

\n(A)
$$
\cosh^{-1} \left(\frac{e^x}{a} \right) + \sec^{-1} \left(\frac{e^x}{a} \right) + c
$$

\n(B)
$$
\sinh^{-1} \left(\frac{e^x}{a} \right) + \sec^{-1} \left(\frac{e^x}{a} \right) + c
$$

\n(C)
$$
\tanh^{-1} \left(\frac{e^x}{a} \right) + \cosh^{-1} \left(\frac{e^x}{a} \right) + c
$$

\n(C)
$$
\tanh^{-1} \left(\frac{e^x}{a} \right) + \cosh^{-1} \left(\frac{e^x}{a} \right) + c
$$

(D) None of these

l

a

Sol.
$$
\int \frac{e^{x} + a}{\sqrt{e^{2x} - a^{2}}} dx
$$

$$
= \int \frac{e^{x}}{\sqrt{e^{2x} - a^{2}}} dx + a \int \frac{e^{x}}{e^{x} \sqrt{e^{2x} - a^{2}}} dx
$$

J

l

a

J

$$
= \cosh^{-1}\left(\frac{e^x}{a}\right) + \sec^{-1}\left(\frac{e^x}{a}\right) + c
$$

Ans.[A]

+ c **Ans.**

Ex.38
$$
\int \frac{dx}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x}
$$
 is equal to
\n(A) $\tan^{-1} \left(\tan x + \frac{1}{2} \right) + c$
\n(B) $\frac{1}{4} \tan^{-1} \left(\tan x + \frac{1}{2} \right) + c$
\n(C) $4 \tan^{-1} \left(\tan x + \frac{1}{2} \right) + c$

(D) None of these Sol. After dividing by $cos^2 x$ to numerator and denominator of integration

$$
I = \int \frac{\sec^2 x \, dx}{4 \tan^2 x + 4 \tan x + 5}
$$

=
$$
\int \frac{\sec^2 x \, dx}{(2 \tan x + 1)^2 + 4}
$$

=
$$
\frac{1}{2 \cdot 2} \tan^{-1} \left(\frac{2 \tan x + 1}{2} \right) + c
$$

Ans. [B]

Ex.39
$$
\int \left(\frac{1-x}{1+x}\right)^2 dx \text{ is equal to-}
$$

(A) $x - 4 \log(x+1) + \frac{4}{x+1} + c$
(B) $x - \log(x+1) + \frac{4}{x+1} + c$
(C) $x - 4 \log(x+1) - \frac{4}{x+1} + c$

(D)
$$
x + \log(x+1) - \frac{4}{x+1} + c
$$

Sol.
$$
\int \frac{[2-(x+1)]^2}{(x+1)^2} dx
$$

$$
= \int \left[\frac{4}{(x+1)^2} - \frac{4}{x+1} + 1 \right] dx
$$

$$
= -\frac{4}{x+1} - 4 \log(x+1) + x + c
$$

[C]

Ex.40
$$
\int \frac{e^x}{e^{2x} + 5e^x + 6}
$$
 equals-

Ans.

(A)
$$
\log \left(\frac{e^x + 3}{e^x + 2}\right) + c
$$

\n(B) $\log \left(\frac{e^x + 2}{e^x + 3}\right) + c$
\n(C) $\frac{1}{2} \log \left(\frac{e^x + 2}{e^x + 3}\right) + c$

(D) None of these

Sol. Put
$$
e^x = t \Rightarrow e^x dx = dt
$$

$$
\therefore I = \int \frac{dt}{t^2 + 5t + 6} = \int \frac{dt}{(1+2)(t+3)}
$$

$$
= \int \left(\frac{1}{t+2} - \frac{1}{t+3}\right) dt
$$

$$
= \log\left(\frac{t+2}{t+3}\right) + c = \log\left(\frac{e^x + 2}{e^x + 3}\right) + c
$$

Ans. [B]

Ex.41
$$
\int \frac{dx}{x + \sqrt{x}} equals
$$

\n(A) $2\log (\sqrt{x} - 1) + c$ (B) $2\log (\sqrt{x} + 1) + c$
\n(C) $\tan^{-1} x + c$ (D) None of these
\n**Sol.**
$$
I = \int \frac{dx}{x + \sqrt{x}}
$$

\n
$$
= \int \frac{2t dt}{t^2 + t} \text{ where } t^2 = x
$$

\n
$$
= 2 \int \frac{dt}{t^2 + 1} = 2 \log (\sqrt{x} + 1) + c
$$

Ans.[B]

 $= 2 \int \frac{dt}{t+1}$

Ex.42
$$
I = \int \frac{4e^{x} + 6e^{-x}}{9e^{x} - 4e^{-x}} dx \text{ is equal to-}
$$
\n(A)
$$
\frac{19}{36}x + \frac{35}{36} \log (9e^{x} - 4e^{-x}) + c
$$
\n(B)
$$
-\frac{19}{36}x + \frac{35}{36} \log (9e^{x} - 4e^{-x}) + c
$$
\n(C)
$$
\frac{1}{36}x + \frac{1}{36} \log (9e^{x} - 4e^{-x}) + c
$$
\n(D) None of these
\n**Sol.** Suppose $4e^{x} + 6e^{-x} = A(9e^{x} - 4e^{-x}) + B(9e^{x} + 4e^{-x})$
\nBy comparing $4 = 9A + 9B$,

$$
6 = -4A + 4B
$$

or A + B = $\frac{4}{9}$, -A + B = $\frac{3}{2}$
After solving A = $-\frac{19}{36}$, B = $\frac{35}{36}$

$$
\therefore I = \int \left[-\frac{19}{36} + \frac{35}{36} \left(\frac{9e^{x} + 4e^{-x}}{9e^{x} - 4e^{-x}} \right) \right] dx
$$

$$
= -\frac{19}{36}x + \frac{35}{36} \log (9e^{x} - 4e^{-x}) + c
$$

Ans.[B]

Ex.43
$$
\int \frac{\sin^{-1}\sqrt{x}}{\sqrt{1-x}} dx
$$
 equals-
\n(A) $2[\sqrt{x} - \sqrt{1-x} \sin^{-1}\sqrt{x}] + c$
\n(B) $2[\sqrt{x} + \sqrt{1-x} \sin^{-1}\sqrt{x}] + c$
\n(C) $[\sqrt{x} - \sqrt{1-x} \sin^{-1}\sqrt{x}] + c$
\n(D) None of these
\n**Sol.** Let $x = \sin^2 t$, then
\n $dx = 2 \sin t \cos t dt$
\n $\therefore I = \int \frac{t}{\cos t}$. 2 sin t cos t dt
\n $= 2 \int t \sin t dt$
\n $= 2[-t \cos t + \sin t] + c$
\n $= 2[\sqrt{x} - \sqrt{1-x} \sin^{-1}\sqrt{x}] + c$

Ans.
$$
[A]
$$

Ex.44
$$
\int \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x + a}} dx
$$
 equals
\n(A) $\sqrt{x^2 + ax} - 2\sqrt{ax + a^2} - a \cosh^{-1} \left(\sqrt{\frac{x + a}{a}} \right) + c$
\n(B) $\sqrt{x^2 + ax} + \sqrt{ax + a^2} - a \cosh^{-1} + \left(\sqrt{\frac{x + a}{a}} \right) c$
\n(C) $\sqrt{x^2 + ax} - 2\sqrt{ax + a^2} + a \cosh^{-1} \left(\sqrt{\frac{x + a}{a}} \right) + c$
\n(D) None of these

Sol. Let $x = a \tan^2 \theta \Rightarrow dx = 2a \tan \theta \sec^2 \theta d\theta$

$$
\therefore I = \int \frac{\sqrt{a} (\tan \theta - 1) . 2a \tan \theta \sec^2 \theta}{\sqrt{a} \sec \theta} d\theta
$$

$$
= 2a \left[\int \tan^2 \theta \sec \theta \, d\theta - \int \sec \theta \tan \theta \, d\theta \right]
$$

$$
= 2a \left[\int \sqrt{\sec^2 \theta - 1} \tan \theta \sec \theta \, d\theta - \sec \theta \right]
$$

$$
= 2a \int \sqrt{t^2 - 1} \, dt - 2a \sec \theta + c \text{ [Where sec } \theta = t]
$$

$$
= 2a \left[\frac{t}{2} \sqrt{t^2 - 1} - \frac{1}{2} \cosh^{-1}(t) \right] - 2a \sqrt{\frac{a + x}{a}} + c
$$

$$
= a \sqrt{\frac{x + a}{a} \cdot \frac{x}{a}} - a \cosh^{-1} \left(\sqrt{\frac{x + a}{a}} \right)
$$

$$
- 2 \sqrt{ax + a^2} + c
$$

$$
= \sqrt{x^2 + ax} - 2 \sqrt{ax + a^2} - a \cosh^{-1} \left(\sqrt{\frac{x + a}{a}} \right) + c
$$

Ans. [A]
\n**Ex.45**
$$
\int \frac{x^5}{\sqrt{1+x^3}} dx \text{ equals-}
$$
\n(A) $\frac{2}{9}(x^3 - 2)\sqrt{1+x^3} + c$
\n(B) $\frac{2}{9}(x^3 + 2)\sqrt{1+x^3} + c$
\n(C) $(x^3 + 2)\sqrt{1+x^3} + c$
\n(D) None of these
\n**Sol.** Put $1 + x^3 = t^2 \Rightarrow 3x^2 dx = 2t dt$
\n $\therefore I = \int \frac{x^3}{\sqrt{1+x^3}} (x^2 dx) = \frac{2}{3} \int (t^2 - 1) dt$

$$
\begin{aligned}\n\therefore 1 - \int \frac{1}{\sqrt{1 + x^3}} \left(x \, dx \right) &= \frac{2}{3} \int (1 - 1) \, dt \\
&= \frac{2}{3} \left[\frac{t^3}{3} - t \right] + c \\
&= \frac{2}{3} \left[\frac{1}{3} (1 + x^3)^{3/2} - \sqrt{1 + x^3} \right] + c \\
&= \frac{2}{9} \sqrt{1 + x^3} \left(1 + x^3 - 3 \right) + c \\
&= \frac{2}{9} \left(x^3 - 2 \right) \sqrt{1 + x^3} + c\n\end{aligned}
$$
\nAns.

[A]

Ex. 46
$$
\int \frac{e^{2\tan^{-1}x}(1+x)^2}{(1+x^2)} dx
$$
 is equal to-
\n(A) $xe^{\tan^{-1}x} + c$ (B) $xe^{2\tan^{-1}x} + c$
\n(C) $2xe^{2\tan^{-1}x} + c$ (D) None of these
\n**Sol.** Putting the value of 2 tan⁻¹ x = t

I =
$$
\frac{1}{2} \int e^{t} \{1 + \tan(t/2)\}^2 dt
$$

\n= $\frac{1}{2} \int e^{t} \left[\sec^2 \frac{t}{2} + 2 \tan \frac{t}{2} \right] dt$
\n= $\frac{1}{2} e^{t} (2 \tan t/2)$
\n= $e^{t} \tan \frac{t}{2} = x e^{2 \tan^{-1} x} + c$ Ans.
\n[B]

Ex.47 If I =
$$
\int \cos^{-1} \sqrt{x} dx
$$
 and
\n
$$
J = \int \frac{\sin^{-1} \sqrt{x} - \cos^{-1} \sqrt{x}}{\sin^{-1} \sqrt{x} + \cos^{-1} \sqrt{x}} dx
$$
, then J equals-(A) x - 4I (B) x + I
\n(C) x - $\frac{4}{\pi}$ I (D) $\frac{\pi}{4}$

Sol. Here

$$
J = \frac{2}{\pi} \int {\sin^{-1} \sqrt{x}} - \cos^{-1} \sqrt{x} \, dx
$$

\n
$$
= \frac{2}{\pi} \left(\frac{\pi}{2} - 2\cos^{-1} \sqrt{x} \right) dx
$$

\n[$\because \sin^{-1} \sqrt{x} + \cos^{-1} \sqrt{x} = \frac{\pi}{2}$]
\n
$$
= \int dx - \frac{4}{\pi} \int \cos^{-1} \sqrt{x} \, dx
$$

\n
$$
= x - \frac{4}{\pi} I.
$$
 Ans. [C]

Ex.48 Which value of the constant of integration will make the integral of sin $3x \cos 5x$ zero at $x = 0$ (A) 0 (B) – 3/16 (C) $-5/16$ (D) $1/8$ **Sol.** $I = \frac{1}{2} \int$ $\frac{1}{2}$ $\int (\sin 8 x - \sin 2x) dx$

$$
= \frac{1}{2} \left[-\frac{\cos 8x}{8} + \frac{\cos 2x}{2} \right] + c
$$

At $x = 0$, $I = -\frac{1}{16} + \frac{1}{4} + c$

$$
\therefore I = 0 \Rightarrow c = -\frac{3}{16}
$$
Ans. [B]

Ex.49 If $\int \frac{dx}{1 + \sin x}$ $\frac{dx}{\sin x} = \tan \left(\frac{x}{2} + a \right)$ I $\left(\frac{x}{-}+a\right)$ l $\left(\frac{x}{2}+a\right)$ $\frac{x}{2}$ + a + c, then value of a is

(A)
$$
\frac{\pi}{4}
$$
 \t\t (B) $-\frac{\pi}{4}$
(C) π \t\t (D) $\frac{\pi}{2}$

Sol.
$$
I = \int \frac{dx}{1 + \sin x}
$$

\n
$$
= \int \frac{dx}{1 + \cos{\pi/2} - x}
$$

\n
$$
= \frac{1}{2} \int \sec^2{\left(\frac{\pi}{4} - \frac{x}{2}\right)} dx
$$

\n
$$
= -\tan{\left(\frac{\pi}{4} - \frac{x}{2}\right)} + c = \tan{\left(-\frac{\pi}{4} + \frac{x}{2}\right)} + c
$$

\n
$$
\therefore \alpha = -\frac{\pi}{4}
$$
 Ans. [B]

Ex. 50 If $\int \frac{2x+3}{(x-1)(x^2+1)} dx$ $^+$ $(x-1)(x^2+1)$ $2x + 3$ $\frac{3}{2}$ dx = $\log[(x-1)^{5/2}(x^2+1)^a]$

> $-\frac{1}{2}$ $\frac{1}{x}$ tan⁻¹ x + k where k is any arbitrary constant, then a is equal to

(A)
$$
5/4
$$
 (B) $-5/3$

Sol. Let
$$
=
$$
 $\frac{2x+3}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1}$
\n $\Rightarrow 2x + 3 = A(x^2+1) + (Bx + C)(x-1)...(1)$
\nNow putting $x = 1$, we get $5 = 2A \Rightarrow A = 5/2$
\nEquating coefficients of similar terms on both sides of (1),
\nwe get,
\n $-B + C = 2$, $A - C = 3$
\n $\Rightarrow C = 5/2 - 3 = -1/2$
\n $B = -1/2 - 2 = -5/2$
\n $\therefore I = \frac{5}{2} \int \frac{dx}{x-1} + \int \frac{-\frac{5}{2}x-\frac{1}{2}}{x^2+1} dx$
\n $= \frac{5}{2} \log(x-1) - \frac{5}{4} \int \frac{2x}{x^2+1} dx - \frac{1}{2} \int \frac{1}{x^2+1} dx$
\n $= \frac{5}{2} \log(x-1) - \frac{5}{4} \log(x^2+1) - \frac{1}{2} \tan^{-1}x + c$
\n $= \log [(x-1)^{5/2} (x^2 + 1)^{-5/4}] - \frac{1}{2} \tan^{-1}x + c$
\n $\therefore a = -5/4$. Ans. [D]