JEE MAIN + ADVANCED

MATHEMATICS

TOPIC NAME AREA UNDER THE CURVE

(PRACTICE SHEET)

AREA UNDER THE CURVE

Question based on Area bounded by a curve

- Q.1 The area between the curves $y = 6 x x^2$ and x-axis is -(A) 125/6 (B) 125/2 (C) 25/6 (D) 25/2
- Q.2 The area between the curve $y = e^x$ and x-axis which lies between x = -1 and x = 1 is-(A) $e^2 - 1$ (B) $(e^2 - 1)/e$ (C) (1 - e)/e (D) $(e - 1)/e^2$
- Q.3 The area bounded by the curve $y = \sin 2x$, x- axis and the ordinate $x = \pi/4$ is-(A) $\pi/4$ (B) $\pi/2$ (C) 1 (D) 1/2
- Q.4 The area between the curve $xy = a^2$, x-axis, x = a and x = 2a is-(A) a log 2 (B) $a^2 \log 2$ (C) 2a log 2 (D) none of these
- Q.5 Area under the curve $y = \sin 2x + \cos 2x$ between x = 0 and $x = \frac{\pi}{4}$, is-(A) 2 sq. units (B) 1 sq. units (C) 3 sq. units (D) 4 sq. units
- Q.6 The area bounded by the curve $y = 4x^2$; x = 0, y = 1 and y = 4 in the first quadrant is-(A) $2\frac{2}{3}$ (B) $3\frac{1}{3}$ (C) $2\frac{1}{3}$ (D) $3\frac{1}{2}$
- Q.7 The area between the curve $y = \sec x$ and y-axis when $1 \le y \le 2$ is-(A) $\frac{2\pi}{3} - \log(2 + \sqrt{3})$ (B) $\frac{2\pi}{3} + \log(2 + \sqrt{3})$ (C) $\frac{\pi}{3} - \frac{1}{2} \log(2 + \sqrt{3})$ (D) None of these
- Q.8 The area bounded by the lines y = x, y = 0 and x = 2 is-(A) 1 (B) 2 (C) 4 (D) None of these
- Q.9 The area bounded by the curve $y = 1 + \frac{8}{x^2}$, x-axis, x = 2 and x = 4 is-(A) 2 (B) 3 (C) 4 (D) 5

- Q.10 The area between the curve $y = \log x$ and x-axis which lies between x = a and x = b(a > 1, b > 1) is-(A) $b \log (b/e) - a \log (a/e)$ (B) $b \log (b/e) + a \log (a/e)$ (C) $\log ab$ (D) $\log (b/a)$
- Q.11 Area bounded by the curve $y = xe^{x^2}$, x- axis and the ordinates x = 0, $x = \alpha$ is $e^{\alpha^2} + 1$ $e^{\alpha^2} - 1$

(A)
$$\frac{e^{\alpha + 1}}{2}$$
 sq. units (B) $\frac{e^{\alpha + 1}}{2}$ sq. units
(C) $e^{\alpha^2} + 1$ sq. units (D) $e^{\alpha^2} - 1$ sq. units

- Q.12 The area bounded between the curve $y = 2x^2 + 5$, x-axis and ordinates x = -2 and x = 1 is-(A) 21 (B) 29/5 (C) 23 (D) 24
- Q.13 Area bounded by curve xy = c, x-axis between x = 1 and x = 4, is-(A) c log 3 sq. units (B) 2 log c sq. units (C) 2c log 2 sq. units (D) 2c log 5 sq. units
- Q.14 The area bounded by the curve $y = x \sin x^2$, x-axis and x = 0 and $x = \sqrt{\frac{\pi}{2}}$ is-(A) 1/2 (B) $1/\sqrt{2}$ (C) 1/4 (D) $\pi/2$
- Q.15 The area bounded between the curve $\frac{x}{4} - \frac{y}{2} + 1 = 0$, x = -2, x = 3 and x-axis is-(A) 45/4 (B) 45/2 (C) 15 (D) 25/2

Q.16 The area bounded by curves $y = \tan x$, x-axis and

$$x = \frac{\pi}{3} \text{ is-}$$
(A) 2 log 2 (B) log 2
(C) log $\left(\frac{2}{\sqrt{3}}\right)$ (D) 0

Q.17 The area between the curve $x^2 = 4ay$, x-axis, and ordinate x = d is-(A) $d^{3}/12a$ (B) d^{3}/a (C) $d^{3}/2a$ (D) $d^{3}/6a$

Q.18 Area bounded by the curve $y = x (x - 1)^2$ $0 \le x \le 1$ and x-axis is-

(A) 4 (B) 1/3

- (C) 1/12 (D) 1/2
- Q.19 The area bounded by the curve $y = \log_e x$, x-axis and ordinate x = e is-(A) $\log_e 2$ (B) 1/2 unit (C) 1 unit (D) e unit
- Q.20 The area bounded by the curve $y = \frac{1}{\cos^2 x}$, coordinates axes and $x = \pi/4$ is-(A) 1 (B) 2 (C) $\pi/4$ (D) ∞
- Q.21 The area between the curve $y^2 = 4x$, y-axis, and y = -1 and y = 3 is-(A) 7/3 (B) 9/4 (C) 1/12 (D) 1/4
- Q.22 The area bounded by the curve $y = \sin 2x$, y-axis and the abscissa y = 1 is-(A) 1 (B) 1/4 (C) $\pi/4$ (D) $(\pi/4) - (1/2)$
- Q.23 The area between the curve $x = 2y y^2$ and y-axis is-(A) 9/4 (B) 4/3 (C) 9 (D) None of these
- Q.24 The area bounded by the curve $x^2 = 8y$, x-axis and the ordinate x = -2, x = 4 is-(A) 4 (B) 2 (C) 1 (D) 3
- Q.25 The area bounded by the curve $y^2 = x$, straight line y = 4, and y-axis is-(A) 16/3 (B) 64/3 (C) $7\sqrt{2}$ (D) None of these
- Q.26 The area between the curve $y = \sin^3 x$, x-axis, and the ordinates x = 0 to $x = \pi/2$ is-(A) 1 (B) 1/3 (C) 2/3 (D) 3/2
- Q.27 The value of a for which the area of the region bounded by the curve $y = \sin 2x$, the straight lines $x = \pi/6$, x = a and x-axis is equal to 1/2 is-(A) $\pi/2$ (B) $\pi/3$ (C) 4/3 (D) $\pi/6$
- Q.28 The area of a loop bounded by the curve $y = a \sin x$ and x-axis is-(A) a (B) $2a^2$ (C) 0 (D) 2a

- Q.29 The area between the curves $x = 2 y y^2$ and y-axis is-(A) 9 (B) 9/2 (C) 9/4 (D) 3
- Q.30 The area bounded by $y = 4x x^2$ and the x-axis is-(A) 30/7 (B) 31/7 (C) 32/3 (D) 34/3
- Q.31 The area contained between the x-axis and one arc of the curve $y = \cos 3x$ is-(A) 1/3 (B) 2/3 (C) 2/7 (D) 2/5

Question based on Symmetric area

- Q.32 The area bounded by the curves $y = 4x^2$ and y = 4 is-(A) 7/3 (B) 14/3 (C) 5/3 (D) 16/3
- Q.33 The area bounded between the curve $|y| = 1 x^2$ is-(A) 2/3 (B) 4/3 (C) 8/3 (D) None of these
- Q.34 The area bounded by the parabola $y^2 = 4ax$, x-axis and x = 2a and latus rectum is-(A) $2a^2(\sqrt{2}-1)$ (B) $4a^2(2\sqrt{2}-1)$

(A)
$$2a^{2} (\sqrt{2} - 1)$$
 (B) $4a^{2} (2\sqrt{2} - 1)$
(C) $\frac{4}{3}a^{2} (2\sqrt{2} - 1)$ (D) $\frac{8a^{2}}{3} (2\sqrt{2} - 1)$

Q.35 The whole area bounded by the curves $x = a \cos t$, $y = b \sin t$ is-

(A)
$$\pi$$
 ab
(B) $\left(\frac{\pi}{2}\right)$ ab
(C) $\left(\frac{\pi}{4}\right)$ ab
(D) None of these

Q.36 The whole area of the curve $9x^{2}+16y^{2}=144$ is-(A) 24π (B) 144π (C) 6π (D) 12π

Question based on **Positive and negative area**

Q.37 The area between the curve $y = \tan x$ and x-axis, when $-\pi/4 \le x \le \pi/4$ is-(A) log 2 (B) log 4 (C) log $\sqrt{2}$ (D) none of these

Q.38 The area bounded by the curve $y = x^3$, the x-axis and the ordinates x = -2 and x = 1 is-(A) - 9 (B) 17/4 (C) - 15/4 (D) 15/4

Q.39	The	area	between	the	curve	у	=	cos	Х	and
	x- ax	kis wh	en $\pi/2 \le x$	$\leq 2\pi$	τ will b	e-				
	(A) 1	1		(H	3) 2					

(C) 3 (D) 4

Question based on Area between two curves

Q.40	The area between	the curves $y^2 = 4x$ and $y = 2x$
	is-	
	(A) 1/4 unit	(B) 1/3 unit
	(C) 1/2 unit	(D) 2/3 unit

- Q.41 The area bounded by the curves $y = e^x$, $y = e^{-x}$ and the line x = 1 is-(A) $e + e^{-1}$ (B) $e + e^{-1} - 1$ (C) $e - e^{-1} + 1$ (D) $e + e^{-1} - 2$
- Q.42 The area bounded by the curve y = (x 1)(x - 2) and coordinate axes is-(A) 1/6 (B) 5/6 (C) 1/3 (D) 2/3
- Q.43 The area bounded by the lines y = 2 + x and y = 2 - x and x-axis is-(A) 3 (B) 4 (C) 8 (D) 16
- Q.44 The area bounded by the curves $y = \sin x$, $y = \cos x$ and x-axis from x = 0 to $x = \pi/2$ is-

(A) $2 + \sqrt{2}$ (B) $\sqrt{2}$ (C) 2 (D) $2 - \sqrt{2}$

- Q.45 The area bounded between parabola $x^2 = 4y$ and y = |x| is-(A) 2/3 (B) 4/3 (C) 8/3 (D) 16/3
- Q.46 The area bounded by the curves $y = x^2$ and y = |x| is-(A) 2/3 (B) 1/6 (C) 1 (D) 1/3
- Q.47 The common area of the curves $y = \sqrt{x}$ and $x = \sqrt{y}$ is-(A) 3 (B) 5/3 (C) 1/3 (D) None of these

- **Q.49** The area bounded by $y = \tan x$, $y = \cot x$, x-axis
 - in $0 \le x \le \frac{\pi}{2}$ is-(A) log 2 (B) 3 log 2 (C) 2 log 2 (D) 4 log 2
- Q.50 The area bounded by the curve $y = 2x x^2$ and straight line y = -x is-(A) 35/6 (B) 9/2 (C) 43/6 (D) none of these
- Q.51 The area between the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the attraight line $\frac{x}{b^2} + \frac{y}{b^2} = 1$ is

straight line
$$\frac{-}{a} + \frac{-}{b} = 1$$
 is-
(A) $\frac{1}{4}\pi ab - \frac{1}{2}ab$ (B) $\frac{1}{4}ab$
(C) $\frac{1}{2}\pi ab$ (D) none of these

- Q.52 The area of the figure bounded by the parabola $y = x^2 + 1$ and the straight line x + y = 3 is-(A) 3/2 (B) 5/2(C) 7/2 (D) 9/2
- Q.53 Common area between the parabolas $y = 2x^2$ and $y = x^2 + 4$ is-(A) 16/3 (B) 8/3 (C) 32/3 (D) None of these
- Q.54 If A is the area between the curve $y = \sin x$ and xaxis in the interval $[0, \pi/2]$, then the area between $y = \sin 2x$ and x-axis in this interval will be-(A) A (B) 2A (C) A/2 (D) None of these
- Q.55 Find the area enclosed by the lines y = x/2, y = 2x and x = 4 is-(A) 1 (B) 2 (C) 12 (D) 16
- Q.56The area of region bounded by y = |[x 2]|, the
x-axis and the line x = -1 & x = 2 is -
(A) 6 sq. unit
(B) 8 sq. unit
(C) 4 sq. unit
(D) None of these
- Q.57 Area bounded by the curve y = f(x), y = x and the lines x = 1, x = t is $(t + \sqrt{1 + t^2} - \sqrt{2} - 1)$ sq. units for all t > 1. If f(x) satisfying f(x) > x for all x > 1, then f(x) is equal to -

(A)
$$x + 1 + \frac{x}{\sqrt{1 + x^2}}$$
 (B) $x + \frac{x}{\sqrt{1 + x^2}}$
(C) $1 + \frac{x}{\sqrt{1 + x^2}}$ (D) $\frac{x}{\sqrt{1 + x^2}}$

- Q.1 The area bounded by the curve
 - y = (x 1) (x 2) (x 3), x-axis and ordinates x = 0, x = 3 is-(A) 9/4 (B) 11/4
 - (C) 11/2 (D) None of these
- Q.2 Area bounded by the curves $y = 2^x$, $y = 2x x^2$, x = 0 and x = 2 is-
 - (A) $\frac{3}{\log 2} \frac{4}{3}$ (B) $\frac{3}{\log 2} + \frac{4}{3}$ (C) $3 \log 2 + \frac{4}{3}$ (D) $3 \log 2 - \frac{4}{3}$
- Q.3 Area bounded by the curves y = |x 1|, y = 0 and |x| = 2 is-
 - (A) 5 (B) 4
 - (C) 9/2 (D) None of these
- Q.4 The area of the region bounded by $y^2 = x$ and x = 36 is divided in the ratio 1 : 7 by the line x = a, then a equals-(A) 7 (B) 8 (C) 9 (D) 0
- Q.5 The area bounded by the curve y = 1 |x| and x-axis is-

(A) 1 (B) 1/2 (C) 2 (D) 1/3

Q.6 The area bounded between the curve $x^2 + y^2 = 9$ and lines y = 3/2, y = 3 and x = 0 is-

(A)
$$\frac{3}{4}(8\pi + 3\sqrt{3})$$
 (B) $\frac{3}{4}(8\pi - 3\sqrt{3})$
(C) $\frac{3}{2}(4\pi - 3\sqrt{3})$ (D) $\frac{3}{8}(4\pi - 3\sqrt{3})$

Q.7 The area bounded by the curve y = f(x), x-axis and the ordinates x = 1 & x = b is $(b-1) \sin(3b+4)$, then f(x) equals-(A) $(x-1) \cos (3x+4)$ (B) $\sin (3x+4)$ (C) $\sin (3x+4) + 3 (x-1) \cos (3x+4)$ (D) None of these

Q.8 The area bounded by the parabola $x^2 = 4y$, the x-axis and the line x = 4 is divided into two equal area by the line $x = \alpha$, then the value of α is-(A) $2^{1/3}$ (B) $2^{2/3}$ (C) $2^{4/3}$ (D) $2^{5/3}$

- Q.9 The area of the closed figure bounded by $y = \cos x$, $y = 1 + (2/\pi) x$ and $x = \pi/2$ is-(A) $3\pi/4$ (B) $\pi/2$ (C) $\frac{3\pi - 4}{4}$ (D) $\frac{\pi - 4}{4}$
- Q.10 The area enclosed between the curves $y = \log_e (x + e), x = \log_e \left(\frac{1}{y}\right)$ and the x-axis is (A) 1 (B) 2 (C) 3 (D) 4
- Q.11 Area of the circle $(x 2)^2 + (y 3)^2 = 32$ which lies below the line y = x + 1 is-

(A)
$$\int_{-2}^{6} \left[(x+1) + \sqrt{32 - (x-2)^2} + 3 \right] dx$$

(B)
$$\int_{-2}^{6} \left[\left\{ \sqrt{32 - (x-2)^2} + 3 \right\} - (x+1) \right] dx$$

(C) 16π

- (D) None of these
- Q.12 Let $f(x) = \max$. {sin x, cos x, 1/2}. Then area of the region bounded by y = f(x), x-axis and $x = 0, x = 2\pi$, is: (A) $(5\pi + 12\sqrt{3})/12$ (B) $(5\pi + 12\sqrt{2})/12$ (C) $(5\pi + 36)/12$ (D) None of these
- Q.13 The area of the region $\{(x, y) : x^2 \le y \le |x|\}$ is-(A) 1/3 (B) 1/2 (C) 1/4 (D) None

Q.14Area bounded by the curve $y^2 (2a - x) = x^3$ and the
line x = 2a is :
(A) $3\pi a^2$
(B) $3\pi a^2/2$
(C) $3\pi a^2/4$
(D) None of these

Q.15 The area of region bounded by the curve

y = $\begin{cases} 2 - x^2, x \le 1 \\ 2x - 1, x > 1 \end{cases}$, x- axis and the ordinates x = -1 and x = 2 is (A) 8/3 (B) 32/3 (C) 4/3 (D) none

- Q.1 The area bounded by the curve y = x |x|, x axis and the ordinates x = 1, x = -1 is given by-
 - (A) 0 (B) $\frac{1}{3}$

(C)
$$\frac{2}{3}$$
 (D) none of these.

- Q.2 Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$, the line $x = \sqrt{3} y$ and x-axis is-(A) π (B) $\pi/2$
 - (C) $\pi/3$ (D) none of these.
- Q.3 If area bounded by the curve $y^2 = 4$ ax and y = mx is $a^{2}/3$, then the value of m is-(A) 2 (B) -2 (C) 1/2 (D) none of these
- Q.4 Area bounded by the curve $y = x \sin x$ and x-axis between x = 0 and $x = 2\pi$ is (A) 2 (B) 3π
 - (C) 4π (D) none of these.
- Q.5 The area of the region bounded by y = |x 1| and y = 1 is-(A) 1 (B) 2
 - (C) 1/2 (D) none of these.
- Q.6 The area of the figure bounded by the curves y = |x - 1| and y = 3 - |x| is-(A) 2 (B) 3 (C) 4 (D) 1

Statement type Questions

Each of the questions given below consists of Statement-I (Assertion) and Statement-II (Reason). Use the following key to choose the appropriate answer.

- (A) If both Statement-I, Statement-II are true, and Statement-II is the correct explanation of Statement-I.
- (B) If both Statement-I and Statement-II are true but Statement-II is not the correct explanation of Statement-I
- (C) If Statement-I is true but Statement-II is false
- (D) If Statement-I is false but Statement-II is true.

Q.7 Statement-I: Area common to the curve $y = \sqrt{x}$ and $x = \sqrt{y}$ is 1/3 sq. units Statement-II: Area = $\int_{a}^{b} (g(x) - f(x)) dx$.

Q.8 Statement-I: Let the area bounded by the curve y = f(x), x-axis from x = 1 to x = a, a > 1 be $3a^2 - 4a + 1$ sq. units then f(x) = 6x - 4. Statement-II:

$$F(a) = Area = \int_{a}^{a} f(x) dx \Rightarrow f(a) = F'(a)$$

Q.9 Statement-I: The area bounded by the curves $y = \sin^{-1} x$, $y = \cos^{-1} x$ and x-axis is $\sqrt{2} - 1$. Statement-II:

$$\int_{0}^{1/\sqrt{2}} \sin^{-1} x \, dx + \int_{1/\sqrt{2}}^{1} \left(\frac{\pi}{2} - \sin^{-1} x\right) dx = \sqrt{2} - 1$$

Passage Based Questions

Consider the parabola $y = x^2 + 1$ and the line x + y = 3

The line cuts the parabola at A and B. Let the abscissa of A and B be α and β .

- Q.10The values of $\alpha + \beta$ and $\alpha\beta$ must be respectively(A) 1 and 2(B) 2 and 1(C) -1 and -2(D) None of these.
- **Q.11** The area bounded between the parabola and the line in terms of α and β must be

(A)
$$|\alpha - \beta| \left| \frac{(\alpha + \beta)^2 - \alpha\beta}{3} + \frac{\alpha + \beta}{2} - 2 \right|$$

(B) $|\alpha - \beta| \left| \frac{\alpha^2 + \beta^2}{3} + \frac{\alpha + \beta}{2} - 2 \right|$
(C) $|\alpha - \beta| |2 - (\alpha + \beta) - (\alpha^2 + \beta^2)|$
(D) None of these.

- Q.12 The area bounded between the parabola and the line must be
 - (A) 2 sq. units
 - (B) $\frac{35}{6}$ sq. units (C) 9/2 sq. units
 - (D) None of these
- Q.13 Area of the region bounded by the curve $y = x^2$, $y = |2 - x^2|$ and y = 2, which lies to the right of the line x = 1, is equal to (A) $(20 + 12\sqrt{2})/\sqrt{3}$ (B) $(20 + 12\sqrt{2})/3$ (C) $(20 - 12\sqrt{2})/\sqrt{3}$

(D)
$$(20 - 12\sqrt{2})/3$$

- Q.14 Area bounded by the curves $x = -4 y^2$ and $x = 1 -5y^2$ is : (A) 3/4 (B) 4/3 (C) 4 (D) 3
- Q.15 Area bounded by the curves y = x 1, y-axis, and $y = [(x^2 + 128)/64], x \in (0, 8)$ above the x-axis, [.] = G.I.F., is equal to (A) 2 (B) 4 (C) 8 (D) None
- Q.16 Let $f(x) = \min \{x + 1, \sqrt{1-x}\}$. Then area bounded by y = f(x) and x- axis is (A) 11/6 (B) 5/6 (C) 7/6 (D) 1/6

Q.17 Area bounded by the curve $xy^2 = a^2 (a - x)$ and y-axis is $(\because a > 0)$

> (A) $\pi a^2/2$ (B) πa^2 (C) $3\pi a^2$ (D) $3\pi a^2/2$

LEVEL- 4

(Question asked in previous AIEEE and IIT-JEE)

0.7

SECTION –A

Q.1 If the area bounded by the x-axis, curve y = f(x) and the lines x = 1, x = b is equal to $\sqrt{b^2 + 1} - \sqrt{2}$ for all b > 1, then f(x) is-

[AIEEE-2002]

(A)
$$\sqrt{(x-1)}$$
 (B) $\sqrt{(x+1)}$
(C) $\sqrt{(x^2+1)}$ (D) $\frac{x}{\sqrt{1+x^2}}$

Q.2 The area of the region bounded by the curves y = |x - 1| and y = 3 - |x| is- [AIEEE-2003] (A) 6 sq. units (B) 2 sq. units

(C) 3 sq. units

Q.3 The area of the region bounded by the curves y = |x - 2|, x = 1, x = 3 and the x- axis is-

(D) 4 sq. units

- Q.4 Area of the greatest rectangle that can be inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is-[AIEEE-2005] (A) 2ab (B) ab (C) \sqrt{ab} (D) $\frac{a}{b}$
- Q.5 The area enclosed between the curve $y = \log_e (x + e)$ and the coordinate axes is-

Q.6 The parabolas $y^2 = 4x$ and $x^2 = 4y$ divide the square region bounded by the lines x = 4, y = 4and the coordinate axes. If S_1 , S_2 , S_3 are respectively the areas of these parts numbered from top to bottom; then $S_1 : S_2 : S_3$ is-

[AIEEE-2005]

(A) 1 : 2 : 1	(B) 1 : 2 : 3
(C) 2 : 1 : 2	(D) 1 : 1 : 1

Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates $x = \frac{\pi}{4}$ and $x = \beta > \frac{\pi}{4}$ is $\left(\beta \sin \beta + \frac{\pi}{4} \cos \beta + \sqrt{2}\beta\right)$. Then $f\left(\frac{\pi}{2}\right)$ is-[AIEEE-2005] (A) $\left(\frac{\pi}{4} + \sqrt{2} - 1\right)$ (B) $\left(\frac{\pi}{4} - \sqrt{2} + 1\right)$

Q.8 The area enclosed between the curves $y^2 = x$ and y = |x| is [AIEEE-2007] (A) $\frac{2}{3}$ (B) 1 (C) $\frac{1}{6}$ (D) $\frac{1}{3}$

(C) $\left(1 - \frac{\pi}{4} - \sqrt{2}\right)$ (D) $\left(1 - \frac{\pi}{4} + \sqrt{2}\right)$

Q.9 The area of the plane region bounded by the curves $x + 2y^2 = 0$ and $x + 3y^2 = 1$ is equal to-[AIEEE-2008]

(A)
$$\frac{1}{3}$$
 (B) $\frac{2}{3}$
(C) $\frac{4}{3}$ (D) $\frac{5}{3}$

Q.10 The area of the region bounded by the parabola $(y - 2)^2 = x - 1$, the tangent to the parabola at the point (2, 3) and the x - axis is - [AIEEE-2009] (A) 3 (B) 6 (C) 9 (D) 12

Q.11 The area bounded by the curves $y = \cos x$ and $y = \sin x$ between the ordinates x = 0 and $x = \frac{3\pi}{2}$ is - [AIEEE-2010] (A) $4\sqrt{2} - 2$ (B) $4\sqrt{2} + 2$ (C) $4\sqrt{2} - 1$ (D) $4\sqrt{2} + 1$

Q.12 The area of the region enclosed by the curves y = x, x = e, y = 1/x and the positive x-axis is :

[IIT Scr.2003]

[AIEEE-2011]

(A) $1/2$ square units	(B) 1 square units
(C) 3/2 square units	(D) 5/2 square units

- The area bounded by the curves $y^2 = 4x$ and 0.13 $x^2 = 4y$ is -[AIEEE-2011] (A) $\frac{32}{3}$ (B) $\frac{16}{2}$ (C) $\frac{8}{3}$
- The area bounded between the parabolas $x^2 = \frac{y}{4}$ Q.14 and $x^2 = 9y$, and the straight line y = 2 is : [AIEEE-2012]

(D) 0

(A)
$$\frac{10\sqrt{2}}{3}$$
 (B) $\frac{20\sqrt{2}}{3}$
(C) $10\sqrt{2}$ (D) $20\sqrt{2}$

Q.15 The area (in square units) bounded by the curves $y = \sqrt{x}$, 2y - x + 3 = 0, x-axis, and lying in the [JEE Main - 2013] first quadrant is -(A) 18 (B) $\frac{27}{4}$ (C) 9 (D) 36

SECTION-B

- The area of the region bounded by y = |x 1| and Q.1 v = 1 is [IIT -1993] (A) 1 (B) 2 (C) 1/2 (D) None of these
- The slope of the tangent to the curve y = f(x) at a Q.2 point (x, y) is 2x + 1 and the curve passes through (1, 2). The area of the region bounded by the curve, the x- axis and the line x = 1 is-

		[IIT- 1995]
(A) 5/3 units	(B) 5/6 units	
(C) 6/5 units	(D) 6 units	

- The area bounded by the curves y = |x| 1 and 0.3 y = -|x| + 1 is-[IIT Scr.2002] (A) 1 (B) 2 (C) $2\sqrt{2}$ (D) 4
- Area of the region bounded by $y = \sqrt{x}$, Q.4 x = 2y + 3 & x-axis lying in 1st quadrant is-

(A)
$$2\sqrt{3}$$
 (B) 18
(C) 9 (D) $34/3$

If area bounded by the curves $x = ay^2$ and Q.5 $y = ax^2$ is 1, then a equals-[IIT Scr.2004]

(A)
$$\frac{1}{\sqrt{3}}$$
 (B) $\frac{1}{3}$
(C) $\frac{1}{2}$ (D) 3

Find the area between the curves $y = (x - 1)^2$, Q.6

y =
$$(x + 1)^2$$
 and y = $\frac{1}{4}$ [IIT Scr.2005]
(A) $\frac{1}{3}$ (B) $\frac{2}{3}$
(C) $\frac{4}{3}$ (D) $\frac{1}{6}$

Q.7 Area of the region bounded by the curve $y = e^x$ and lines x = 0 and y = e is-[IIT- 2009]

(A)
$$e - 1$$
 (B) $\int_{1}^{e} \ell n(e+1-y) dy$
(C) $e - \int_{0}^{1} e^{x} dx$ (D) $\int_{1}^{e} \ell ny dy$

Q.8 Let the straight line x = b divide the area enclosed by $y = (1 - x)^2$, y = 0, and x = 0 into two parts $R_1(0 \le x \le b)$ and $R_2(b \le x \le 1)$ such that $\mathbf{R}_1 - \mathbf{R}_2 = \frac{1}{4}$. Then *b* equals [IIT- 2011] (A) $\frac{3}{4}$ (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) $\frac{1}{4}$

The area enclosed by the curves $y = \sin x + \cos x$ Q.9 and y = $|\cos x - \sin x|$ over the interval $\left|0, \frac{\pi}{2}\right|$ [JEE - Advance 2013] is -(A) $4(\sqrt{2}-1)$ (B) $2\sqrt{2}(\sqrt{2}-1)$ (C) $2(\sqrt{2}+1)$ (D) $2\sqrt{2}(\sqrt{2}+1)$

ANSWER KEY

LEVEL- 1

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	А	В	D	В	В	С	Α	В	С	А	В	Α	С	Α	А	В	Α	С	С	А
Q.No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	А	D	В	D	В	С	В	D	В	С	В	D	С	С	А	D	Α	В	С	В
Q.No.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57			
Ans.	D	В	В	D	D	D	С	В	Α	В	А	D	С	А	С	А	Α			

LEVEL-2

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	В	A	А	С	А	D	С	D	С	В	С	D	А	А	D

LEVEL- 3

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Ans.	С	С	А	С	А	С	А	А	А	С	А	С	D	В	В	С	В

LEVEL-4

SECTION-A

(Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Ans.	D	D	Α	Α	Α	D	D	С	С	С	Α	С	В	В	С

SECTION-B

|x-1|

8.[B]

$$R_{1} - R_{2} = \frac{1}{4}$$

$$\int_{0}^{b} (x - 1)^{2} dx - \int_{b}^{1} (x - 1)^{2} dx = \frac{1}{4}$$

$$\Rightarrow \left(\frac{(x - 1)^{3}}{3}\right)_{0}^{b} - \left(\frac{(x - 1)^{3}}{3}\right)_{b}^{1} = \frac{1}{4}$$

$$\Rightarrow \frac{(b - 1)^{3}}{3} + \frac{1}{3} + \frac{(b - 1)^{3}}{3} = \frac{1}{4}$$

$$\Rightarrow \frac{2}{3} (b - 1)^{3} = \frac{-1}{12} \Rightarrow (b - 1)^{3} = \frac{-1}{8}$$

$$\Rightarrow b - 1 = \frac{-1}{2} \Rightarrow b = \frac{1}{2}$$
9.[B] Area =
$$\int_{0}^{\pi/2} ((\sin x + \cos x) - |\cos x - \sin x|) dx$$

$$= \int_{0}^{\pi/2} (\sin x - \cos x) dx - \int_{0}^{\pi/4} (\cos x - \sin x) dx - \int_{\pi/4}^{\pi/2} (\sin x - \cos x) dx$$

$$= [-\cos x + \sin x]_{0}^{\pi/2} - [\sin x + \cos x]_{0}^{\pi/4} - [-\cos x - \sin x]_{0}^{\pi/4} = [-\cos x - \sin x]_{0}^{\pi/2} = (1 + 1) - (\sqrt{2} - 1) - (-1 + \sqrt{2})$$

$$= 2 - \sqrt{2} + 1 + 1 - \sqrt{2}$$

$$= 4 - 2\sqrt{2}$$

$$= 2\sqrt{2} (\sqrt{2} - 1)$$